These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29131199)

  • 1. Positive dwell time algorithm with minimum equal extra material removal in deterministic optical surfacing technology.
    Li L; Xue D; Deng W; Wang X; Bai Y; Zhang F; Zhang X
    Appl Opt; 2017 Nov; 56(32):9098-9104. PubMed ID: 29131199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model and algorithm based on accurate realization of dwell time in magnetorheological finishing.
    Song C; Dai Y; Peng X
    Appl Opt; 2010 Jul; 49(19):3676-83. PubMed ID: 20648133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Elementary Approximation of Dwell Time Algorithm for Ultra-Precision Computer-Controlled Optical Surfacing.
    Wang Y; Zhang Y; Kang R; Ji F
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33919287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zernike mapping of optimum dwell time in deterministic fabrication of freeform optics.
    Zhu W; Beaucamp A
    Opt Express; 2019 Sep; 27(20):28692-28706. PubMed ID: 31684616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Method for Optimizing the Dwell Time of Optical Components in Magnetorheological Finishing Based on Particle Swarm Optimization.
    Gao B; Fan B; Wang J; Wu X; Xin Q
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38276846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-tool optimization for computer controlled optical surfacing.
    Ke X; Wang T; Zhang Z; Huang L; Wang C; Negi VS; Pullen WC; Choi H; Kim D; Idir M
    Opt Express; 2022 May; 30(10):16957-16972. PubMed ID: 36221529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear dwell-time algorithm for freeform surface generation by atmospheric-pressure plasma processing.
    Su X; Yue X
    Opt Express; 2022 May; 30(11):18348-18363. PubMed ID: 36221638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modeling and application of removal functions during deterministic ion beam figuring of optical surfaces. Part 1: Mathematical modeling.
    Liao W; Dai Y; Xie X; Zhou L
    Appl Opt; 2014 Jul; 53(19):4266-74. PubMed ID: 25089990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RIFTA: A Robust Iterative Fourier Transform-based dwell time Algorithm for ultra-precision ion beam figuring of synchrotron mirrors.
    Wang T; Huang L; Kang H; Choi H; Kim DW; Tayabaly K; Idir M
    Sci Rep; 2020 May; 10(1):8135. PubMed ID: 32424222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion beam figuring of high-slope surfaces based on figure error compensation algorithm.
    Dai Y; Liao W; Zhou L; Chen S; Xie X
    Appl Opt; 2010 Dec; 49(34):6630-6. PubMed ID: 21124541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-tool multiplexing model of parallel computer controlled optical surfacing.
    Ke X; Wang T; Choi H; Pullen W; Huang L; Idir M; Kim DW
    Opt Lett; 2020 Dec; 45(23):6426-6429. PubMed ID: 33258828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trigonometric-spline dwell time scheduling and real-time interpolator under dynamic constraints for deterministic polishing.
    Fan W; Yan M; Hai K; Cai L; Huang W
    Opt Express; 2024 Mar; 32(6):9255-9275. PubMed ID: 38571164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions.
    Kim DW; Kim SW; Burge JH
    Opt Express; 2009 Nov; 17(24):21850-66. PubMed ID: 19997430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dwell-time algorithm for polishing large optics.
    Wang C; Yang W; Wang Z; Yang X; Hu C; Zhong B; Guo Y; Xu Q
    Appl Opt; 2014 Jul; 53(21):4752-60. PubMed ID: 25090214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal dwell time optimization for deterministic optics fabrication.
    Wang T; Huang L; Vescovi M; Kuhne D; Zhu Y; Negi VS; Zhang Z; Wang C; Ke X; Choi H; Pullen WC; Kim D; Kemao Q; Nakhoda K; Bouet N; Idir M
    Opt Express; 2021 Nov; 29(23):38737-38757. PubMed ID: 34808920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on error control and compensation in magnetorheological finishing.
    Dai Y; Hu H; Peng X; Wang J; Shi F
    Appl Opt; 2011 Jul; 50(19):3321-9. PubMed ID: 21743536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical modeling and application of removal functions during deterministic ion beam figuring of optical surfaces. Part 2: application.
    Liao W; Dai Y; Xie X; Zhou L
    Appl Opt; 2014 Jul; 53(19):4275-81. PubMed ID: 25089991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model of the material removal function and an experimental study on a magnetorheological finishing process using a small ball-end permanent-magnet polishing head.
    Chen M; Liu H; Cheng J; Yu B; Fang Z
    Appl Opt; 2017 Jul; 56(19):5573-5582. PubMed ID: 29047518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on the influence of the non-stationary effect of the magnetorheological finishing removal function on mid-frequency errors of optical component surfaces.
    Wang B; Tie G; Shi F; Song C; Guo S
    Opt Express; 2023 Oct; 31(21):35016-35031. PubMed ID: 37859243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal Modeling and Experimental Verification of Magnetorheological Polishing Fused Silica Glass.
    Zhang L; Li W; Zhou J; Lu M; Liu Q; Du Y; Yang Y
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.