These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
67 related articles for article (PubMed ID: 29131321)
21. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Meadows AL; Hawkins KM; Tsegaye Y; Antipov E; Kim Y; Raetz L; Dahl RH; Tai A; Mahatdejkul-Meadows T; Xu L; Zhao L; Dasika MS; Murarka A; Lenihan J; Eng D; Leng JS; Liu CL; Wenger JW; Jiang H; Chao L; Westfall P; Lai J; Ganesan S; Jackson P; Mans R; Platt D; Reeves CD; Saija PR; Wichmann G; Holmes VF; Benjamin K; Hill PW; Gardner TS; Tsong AE Nature; 2016 Sep; 537(7622):694-697. PubMed ID: 27654918 [TBL] [Abstract][Full Text] [Related]
22. Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering. Li Q; Sun Z; Li J; Zhang Y FEMS Microbiol Lett; 2013 Aug; 345(2):94-101. PubMed ID: 23718229 [TBL] [Abstract][Full Text] [Related]
23. Regulation of THI4 (MOL1), a thiamine-biosynthetic gene of Saccharomyces cerevisiae. Praekelt UM; Byrne KL; Meacock PA Yeast; 1994 Apr; 10(4):481-90. PubMed ID: 7941734 [TBL] [Abstract][Full Text] [Related]
24. The [URE3] yeast prion: from genetics to biochemistry. Komar AA; Melki R; Cullin C Biochemistry (Mosc); 1999 Dec; 64(12):1401-7. PubMed ID: 10648964 [TBL] [Abstract][Full Text] [Related]
25. Metabolic engineering of Saccharomyces cerevisiae for linalool production. Amiri P; Shahpiri A; Asadollahi MA; Momenbeik F; Partow S Biotechnol Lett; 2016 Mar; 38(3):503-8. PubMed ID: 26614300 [TBL] [Abstract][Full Text] [Related]
26. The p1 protein of the yeast transposon Ty1 can be used for the construction of bi-functional virus-like particles. Marchenko AN; Kozlov DG; Svirshchevskaya EV; Viskova NY; Benevolensky SV J Mol Microbiol Biotechnol; 2003; 5(2):97-104. PubMed ID: 12736532 [TBL] [Abstract][Full Text] [Related]
27. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae. Zhou P; Xie W; Li A; Wang F; Yao Z; Bian Q; Zhu Y; Yu H; Ye L Enzyme Microb Technol; 2017 May; 100():28-36. PubMed ID: 28284309 [TBL] [Abstract][Full Text] [Related]
28. Expression of bovine cytochrome P450c21 and its fused enzymes with yeast NADPH-cytochrome P450 reductase in Saccharomyces cerevisiae. Sakaki T; Shibata M; Yabusaki Y; Murakami H; Ohkawa H DNA Cell Biol; 1990 Oct; 9(8):603-14. PubMed ID: 2125425 [TBL] [Abstract][Full Text] [Related]
29. Improving the productivity of S-adenosyl-l-methionine by metabolic engineering in an industrial Saccharomyces cerevisiae strain. Zhao W; Hang B; Zhu X; Wang R; Shen M; Huang L; Xu Z J Biotechnol; 2016 Oct; 236():64-70. PubMed ID: 27510807 [TBL] [Abstract][Full Text] [Related]
30. A novel fusion partner for enhanced secretion of recombinant proteins in Saccharomyces cerevisiae. Bae JH; Sung BH; Seo JW; Kim CH; Sohn JH Appl Microbiol Biotechnol; 2016 Dec; 100(24):10453-10461. PubMed ID: 27412460 [TBL] [Abstract][Full Text] [Related]
31. Role of integrase in reverse transcription of the Saccharomyces cerevisiae retrotransposon Ty1. Wilhelm M; Wilhelm FX Eukaryot Cell; 2005 Jun; 4(6):1057-65. PubMed ID: 15947198 [TBL] [Abstract][Full Text] [Related]
32. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206 [TBL] [Abstract][Full Text] [Related]
33. Role of Saccharomyces cerevisiae Rap1 protein in Ty1 and Ty1-mediated transcription. Gray WM; Fassler JS Gene Expr; 1993; 3(3):237-51. PubMed ID: 8019126 [TBL] [Abstract][Full Text] [Related]
34. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
35. Three-pathway combination for glutathione biosynthesis in Saccharomyces cerevisiae. Tang L; Wang W; Zhou W; Cheng K; Yang Y; Liu M; Cheng K; Wang W Microb Cell Fact; 2015 Sep; 14():139. PubMed ID: 26377681 [TBL] [Abstract][Full Text] [Related]
36. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae. Zhao J; Bao X; Li C; Shen Y; Hou J Appl Microbiol Biotechnol; 2016 May; 100(10):4561-71. PubMed ID: 26883346 [TBL] [Abstract][Full Text] [Related]
37. Expression and activity of the Hxt7 high-affinity hexose transporter of Saccharomyces cerevisiae. Ye L; Berden JA; van Dam K; Kruckeberg AL Yeast; 2001 Sep; 18(13):1257-67. PubMed ID: 11561293 [TBL] [Abstract][Full Text] [Related]
38. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae. Duan L; Ding W; Liu X; Cheng X; Cai J; Hua E; Jiang H Microb Cell Fact; 2017 Sep; 16(1):165. PubMed ID: 28950867 [TBL] [Abstract][Full Text] [Related]
39. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae. Kwak S; Kim SR; Xu H; Zhang GC; Lane S; Kim H; Jin YS Biotechnol Bioeng; 2017 Nov; 114(11):2581-2591. PubMed ID: 28667762 [TBL] [Abstract][Full Text] [Related]
40. Intracellular location of the Saccharomyces cerevisiae CDC6 gene product. Jong A; Young M; Chen GC; Zhang SQ; Chan C DNA Cell Biol; 1996 Oct; 15(10):883-95. PubMed ID: 8892760 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]