These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 29131818)
1. Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays. Mena GE; Grosberg LE; Madugula S; Hottowy P; Litke A; Cunningham J; Chichilnisky EJ; Paninski L PLoS Comput Biol; 2017 Nov; 13(11):e1005842. PubMed ID: 29131818 [TBL] [Abstract][Full Text] [Related]
2. Spike sorting in the presence of stimulation artifacts: a dynamical control systems approach. Shokri M; Gogliettino AR; Hottowy P; Sher A; Litke AM; Chichilnisky EJ; Pequito S; Muratore D J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38271715 [No Abstract] [Full Text] [Related]
3. Topographic prominence discriminator for the detection of short-latency spikes of retinal ganglion cells. Choi MH; Ahn J; Park DJ; Lee SM; Kim K; Cho DD; Senok SS; Koo KI; Goo YS J Neural Eng; 2017 Feb; 14(1):016017. PubMed ID: 28045002 [TBL] [Abstract][Full Text] [Related]
4. A model-based spike sorting algorithm for removing correlation artifacts in multi-neuron recordings. Pillow JW; Shlens J; Chichilnisky EJ; Simoncelli EP PLoS One; 2013; 8(5):e62123. PubMed ID: 23671583 [TBL] [Abstract][Full Text] [Related]
5. New approaches to eliminating common-noise artifacts in recordings from intracortical microelectrode arrays: inter-electrode correlation and virtual referencing. Paralikar KJ; Rao CR; Clement RS J Neurosci Methods; 2009 Jun; 181(1):27-35. PubMed ID: 19394363 [TBL] [Abstract][Full Text] [Related]
6. Comparison of electrical microstimulation artifact removal methods for high-channel-count prostheses. Wang F; Chen X; Roelfsema PR J Neurosci Methods; 2024 Aug; 408():110169. PubMed ID: 38782123 [TBL] [Abstract][Full Text] [Related]
7. ERAASR: an algorithm for removing electrical stimulation artifacts from multielectrode array recordings. O'Shea DJ; Shenoy KV J Neural Eng; 2018 Apr; 15(2):026020. PubMed ID: 29265009 [TBL] [Abstract][Full Text] [Related]
8. Prediction of cortical responses to simultaneous electrical stimulation of the retina. Halupka KJ; Shivdasani MN; Cloherty SL; Grayden DB; Wong YT; Burkitt AN; Meffin H J Neural Eng; 2017 Feb; 14(1):016006. PubMed ID: 27900949 [TBL] [Abstract][Full Text] [Related]
9. Electrical stimulation of retinal neurons in epiretinal and subretinal configuration using a multicapacitor array. Eickenscheidt M; Jenkner M; Thewes R; Fromherz P; Zeck G J Neurophysiol; 2012 May; 107(10):2742-55. PubMed ID: 22357789 [TBL] [Abstract][Full Text] [Related]
10. Recovery of early neural spikes from stimulation electrodes using a DC-coupled low gain high resolution data acquisition system. Jung H; Kim J; Nam Y J Neurosci Methods; 2018 Jul; 304():118-125. PubMed ID: 29709657 [TBL] [Abstract][Full Text] [Related]
11. Mixed-signal template-based reduction scheme for stimulus artifact removal in electrical stimulation. Nguyen TK; Musa S; Eberle W; Bartic C; Gielen G Med Biol Eng Comput; 2013 Apr; 51(4):449-58. PubMed ID: 23242784 [TBL] [Abstract][Full Text] [Related]
12. On the Stimulation Artifact Reduction during Electrophysiological Recording of Compound Nerve Action Potentials Panskus R; Holzapfel L; Serdijn WA; Giagka V Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083005 [TBL] [Abstract][Full Text] [Related]
13. Spectral cancellation of microstimulation artifact for simultaneous neural recording in situ. Gnadt JW; Echols SD; Yildirim A; Zhang H; Paul K IEEE Trans Biomed Eng; 2003 Oct; 50(10):1129-35. PubMed ID: 14560765 [TBL] [Abstract][Full Text] [Related]
14. Factors affecting the stimulus artifact tail in surface-recorded somatosensory-evoked potentials. Hua Y; Lovely DF; Doraiswami R Med Biol Eng Comput; 2006 Mar; 44(3):226-41. PubMed ID: 16937164 [TBL] [Abstract][Full Text] [Related]
15. Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes. Takahashi S; Anzai Y; Sakurai Y J Neurophysiol; 2003 Apr; 89(4):2245-58. PubMed ID: 12612049 [TBL] [Abstract][Full Text] [Related]
16. Inference of Electrical Stimulation Sensitivity from Recorded Activity of Primate Retinal Ganglion Cells. Madugula SS; Vilkhu R; Shah NP; Grosberg LE; Kling A; Gogliettino AR; Nguyen H; Hottowy P; Sher A; Litke AM; Chichilnisky EJ J Neurosci; 2023 Jun; 43(26):4808-4820. PubMed ID: 37268418 [TBL] [Abstract][Full Text] [Related]
17. Complexity optimization and high-throughput low-latency hardware implementation of a multi-electrode spike-sorting algorithm. Dragas J; Jackel D; Hierlemann A; Franke F IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):149-58. PubMed ID: 25415989 [TBL] [Abstract][Full Text] [Related]
18. An impedance matching algorithm for common-mode interference removal in vagus nerve recordings. Levy TJ; Ahmed U; Tsaava T; Chang YC; Lorraine PJ; Tomaio JN; Cracchiolo M; Lopez M; Rieth L; Tracey KJ; Zanos S; Zanos TP J Neurosci Methods; 2020 Jan; 330():108467. PubMed ID: 31654663 [TBL] [Abstract][Full Text] [Related]