BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 29131853)

  • 1. Transcriptome analysis of Crossostephium chinensis provides insight into the molecular basis of salinity stress responses.
    Yang H; Sun M; Lin S; Guo Y; Yang Y; Zhang T; Zhang J
    PLoS One; 2017; 12(11):e0187124. PubMed ID: 29131853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insight into the molecular basis of cadmium stress responses of wild paper mulberry plant by transcriptome analysis.
    Xu Z; Dong M; Peng X; Ku W; Zhao Y; Yang G
    Ecotoxicol Environ Saf; 2019 Apr; 171():301-312. PubMed ID: 30612018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Analysis of the Chrysanthemum Leaf Transcript Profiling in Response to Salt Stress.
    Wu YH; Wang T; Wang K; Liang QY; Bai ZY; Liu QL; Pan YZ; Jiang BB; Zhang L
    PLoS One; 2016; 11(7):e0159721. PubMed ID: 27447718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptome analysis of the Asteraceae halophyte Karelinia caspica under salt stress.
    Zhang X; Liao M; Chang D; Zhang F
    BMC Res Notes; 2014 Dec; 7():927. PubMed ID: 25515859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome profiling of Gerbera hybrida reveals that stem bending is caused by water stress and regulation of abscisic acid.
    Ge Y; Lai Q; Luo P; Liu X; Chen W
    BMC Genomics; 2019 Jul; 20(1):600. PubMed ID: 31331262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress.
    Shi P; Gu M
    BMC Plant Biol; 2020 Dec; 20(1):568. PubMed ID: 33380327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense.
    Kashyap SP; Prasanna HC; Kumari N; Mishra P; Singh B
    Sci Rep; 2020 Sep; 10(1):15835. PubMed ID: 32985535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome profiling reveals multiple regulatory pathways of Tamarix chinensis in response to salt stress.
    Li R; Fu R; Li M; Song Y; Li J; Chen C; Gu Y; Liang X; Nie W; Ma L; Wang X; Zhang H; Zhang H
    Plant Cell Rep; 2023 Nov; 42(11):1809-1824. PubMed ID: 37733273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide transcriptome analysis of the salt stress tolerance mechanism in Rosa chinensis.
    Tian X; Wang Z; Zhang Q; Ci H; Wang P; Yu L; Jia G
    PLoS One; 2018; 13(7):e0200938. PubMed ID: 30048505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genome-wide transcriptome map of pistachio (Pistacia vera L.) provides novel insights into salinity-related genes and marker discovery.
    Moazzzam Jazi M; Seyedi SM; Ebrahimie E; Ebrahimi M; De Moro G; Botanga C
    BMC Genomics; 2017 Aug; 18(1):627. PubMed ID: 28814265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-Transcriptome Analysis of Differentially Expressed Genes in the Vegetative Buds, Floral Buds and Buds of Chrysanthemum morifolium.
    Liu H; Sun M; Du D; Pan H; Cheng T; Wang J; Zhang Q
    PLoS One; 2015; 10(5):e0128009. PubMed ID: 26009891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress.
    Yang L; Jin Y; Huang W; Sun Q; Liu F; Huang X
    BMC Genomics; 2018 Sep; 19(1):717. PubMed ID: 30261913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo transcriptome sequencing of two cultivated jute species under salinity stress.
    Yang Z; Yan A; Lu R; Dai Z; Tang Q; Cheng C; Xu Y; Su J
    PLoS One; 2017; 12(10):e0185863. PubMed ID: 29059212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress.
    Xu P; Liu Z; Fan X; Gao J; Zhang X; Zhang X; Shen X
    Gene; 2013 Aug; 525(1):26-34. PubMed ID: 23651590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic Analysis of
    Shao F; Zhang L; Wilson IW; Qiu D
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30384437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-Seq analysis of Clerodendrum inerme (L.) roots in response to salt stress.
    Xiong Y; Yan H; Liang H; Zhang Y; Guo B; Niu M; Jian S; Ren H; Zhang X; Li Y; Zeng S; Wu K; Zheng F; Teixeira da Silva JA; Ma G
    BMC Genomics; 2019 Oct; 20(1):724. PubMed ID: 31601194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis of hexaploid hulless oat in response to salinity stress.
    Wu B; Hu Y; Huo P; Zhang Q; Chen X; Zhang Z
    PLoS One; 2017; 12(2):e0171451. PubMed ID: 28192458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome Analysis of Ceriops tagal in Saline Environments Using RNA-Sequencing.
    Xiao X; Hong Y; Xia W; Feng S; Zhou X; Fu X; Zang J; Xiao Y; Niu X; Li C; Chen Y
    PLoS One; 2016; 11(12):e0167551. PubMed ID: 27936168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global Transcriptome Profiles of 'Meyer' Zoysiagrass in Response to Cold Stress.
    Wei S; Du Z; Gao F; Ke X; Li J; Liu J; Zhou Y
    PLoS One; 2015; 10(6):e0131153. PubMed ID: 26115186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach.
    Mehta RH; Ponnuchamy M; Kumar J; Reddy NR
    Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.