These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 29131867)
1. Differential transcriptome analysis reveals genes related to cold tolerance in seabuckthorn carpenter moth, Eogystia hippophaecolus. Cui M; Hu P; Wang T; Tao J; Zong S PLoS One; 2017; 12(11):e0187105. PubMed ID: 29131867 [TBL] [Abstract][Full Text] [Related]
2. Climate change impacts on the potential distribution of Eogystia hippophaecolus in China. Li X; Ge X; Chen L; Zhang L; Wang T; Zong S Pest Manag Sci; 2019 Jan; 75(1):215-223. PubMed ID: 29808532 [TBL] [Abstract][Full Text] [Related]
3. The Influence of Fatty Acids on Cold Hardiness of Eogystia hippophaecolus Larvae. Tian B; Feng Y; Ren L; Wang T; Zong S Cryo Letters; 2018; 39(3):166-176. PubMed ID: 30059563 [TBL] [Abstract][Full Text] [Related]
4. Sensilla on six olfactory organs of male Eogystia hippophaecolus (Lepidoptera: Cossidae). Hu P; Gao C; Tao J; Lu P; Luo Y; Ren L Microsc Res Tech; 2018 Sep; 81(9):1059-1070. PubMed ID: 30351496 [TBL] [Abstract][Full Text] [Related]
5. Characterization of transcriptome in the Indian meal moth Plodia interpunctella (Lepidoptera: Pyralidae) and gene expression analysis during developmental stages. Tang PA; Wu HJ; Xue H; Ju XR; Song W; Zhang QL; Yuan ML Gene; 2017 Jul; 622():29-41. PubMed ID: 28412460 [TBL] [Abstract][Full Text] [Related]
6. Sensilla on the Antennae and Ovipositor of the Sea Buckthorn Carpenter Moth, Holcocerus hippophaecolus Hua et al (Lepidoptera: Cossidae). Wang R; Zhang L; Xu LL; Zong SX; Luo YQ Neotrop Entomol; 2015 Feb; 44(1):68-76. PubMed ID: 26013014 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome responses to heat- and cold-stress in ladybirds (Cryptolaemus montrouzieri Mulasnt) analyzed by deep-sequencing. Zhang Y; Wu H; Xie J; Jiang R; Deng C; Pang H Biol Res; 2015 Nov; 48():66. PubMed ID: 26585910 [TBL] [Abstract][Full Text] [Related]
8. Comparative transcriptome analysis of false codling moth, Thaumatotibia leucotreta in response to high and low-temperature treatments. Mwando NL; Khamis FM; Ndlela S; Meyhöfer R; Ombura FLO; Wamalwa M; Subramanian S; Mohamed SA Comp Biochem Physiol Part D Genomics Proteomics; 2024 Jun; 50():101199. PubMed ID: 38330807 [TBL] [Abstract][Full Text] [Related]
9. Deep sequencing-based characterization of transcriptome of Pyrus ussuriensis in response to cold stress. Yang T; Huang XS Gene; 2018 Jun; 661():109-118. PubMed ID: 29580898 [TBL] [Abstract][Full Text] [Related]
10. De novo assembly and discovery of genes that are involved in drought tolerance in Tibetan Sophora moorcroftiana. Li H; Yao W; Fu Y; Li S; Guo Q PLoS One; 2015; 10(1):e111054. PubMed ID: 25559297 [TBL] [Abstract][Full Text] [Related]
11. Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects. Liu Y; Su H; Li R; Li X; Xu Y; Dai X; Zhou Y; Wang H BMC Genomics; 2017 Dec; 18(1):974. PubMed ID: 29258441 [TBL] [Abstract][Full Text] [Related]
12. Global Transcriptome Profiles of 'Meyer' Zoysiagrass in Response to Cold Stress. Wei S; Du Z; Gao F; Ke X; Li J; Liu J; Zhou Y PLoS One; 2015; 10(6):e0131153. PubMed ID: 26115186 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress. Chopra R; Burow G; Hayes C; Emendack Y; Xin Z; Burke J BMC Genomics; 2015 Dec; 16():1040. PubMed ID: 26645959 [TBL] [Abstract][Full Text] [Related]
14. De Novo Transcriptome Sequencing of Low Temperature-Treated Phlox subulata and Analysis of the Genes Involved in Cold Stress. Qu Y; Zhou A; Zhang X; Tang H; Liang M; Han H; Zuo Y Int J Mol Sci; 2015 Apr; 16(5):9732-48. PubMed ID: 25938968 [TBL] [Abstract][Full Text] [Related]
15. De novo assembly and analysis of the transcriptome of Ocimum americanum var. pilosum under cold stress. Zhan X; Yang L; Wang D; Zhu JK; Lang Z BMC Genomics; 2016 Mar; 17():209. PubMed ID: 26955811 [TBL] [Abstract][Full Text] [Related]
16. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach. Mehta RH; Ponnuchamy M; Kumar J; Reddy NR Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374 [TBL] [Abstract][Full Text] [Related]
17. Analysis of differentially expressed genes and adaptive mechanisms of Liu J; Wang Y; Li Q Hereditas; 2017; 154():10. PubMed ID: 28484361 [TBL] [Abstract][Full Text] [Related]
18. DeepSAGE based differential gene expression analysis under cold and freeze stress in seabuckthorn (Hippophae rhamnoides L.). Chaudhary S; Sharma PC PLoS One; 2015; 10(3):e0121982. PubMed ID: 25803684 [TBL] [Abstract][Full Text] [Related]
19. Genetic structure in the seabuckthorn carpenter moth (Holcocerus hippophaecolus) in China: the role of outbreak events, geographical and host factors. Tao J; Chen M; Zong SX; Luo YQ PLoS One; 2012; 7(1):e30544. PubMed ID: 22291983 [TBL] [Abstract][Full Text] [Related]
20. De novo transcriptome and expression profile analyses of the Asian corn borer (Ostrinia furnacalis) reveals relevant flubendiamide response genes. Cui L; Rui C; Yang D; Wang Z; Yuan H BMC Genomics; 2017 Jan; 18(1):20. PubMed ID: 28056803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]