These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29131972)

  • 41. Application of Fe-biochar composites for selenium (Se
    Satyro S; Li H; Dehkhoda AM; McMillan R; Ellis N; Baldwin SA
    J Environ Manage; 2021 Jan; 277():111472. PubMed ID: 33049612
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water.
    Chai L; Wang Y; Zhao N; Yang W; You X
    Water Res; 2013 Aug; 47(12):4040-9. PubMed ID: 23602616
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adsorption and removal of oxo-anions of arsenic and selenium on the zirconium(IV) loaded polymer resin functionalized with diethylenetriamine-N,N,N',N'-polyacetic acid.
    Suzuki TM; Tanaka DA; Tanco MA; Kanesato M; Yokoyama T
    J Environ Monit; 2000 Dec; 2(6):550-5. PubMed ID: 11296739
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Geochemistry of inorganic arsenic and selenium in a tropical soil: effect of reaction time, pH, and competitive anions on arsenic and selenium adsorption.
    Goh KH; Lim TT
    Chemosphere; 2004 May; 55(6):849-59. PubMed ID: 15041289
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Zero-valent iron for the abatement of arsenate and selenate from flowback water of hydraulic fracturing.
    Sun Y; Chen SS; Tsang DCW; Graham NJD; Ok YS; Feng Y; Li XD
    Chemosphere; 2017 Jan; 167():163-170. PubMed ID: 27718428
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adsorption and desorption of bivalent metals to hematite nanoparticles.
    Grover VA; Hu J; Engates KE; Shipley HJ
    Environ Toxicol Chem; 2012 Jan; 31(1):86-92. PubMed ID: 21994178
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pyridinium-functionalized magnetic mesoporous silica nanoparticles as a reusable adsorbent for phosphate removal from aqueous solution.
    Ma F; Du H; Li R; Zhang Z
    Water Sci Technol; 2016; 74(5):1127-35. PubMed ID: 27642832
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Leaching of boron, arsenic and selenium from sedimentary rocks: II. pH dependence, speciation and mechanisms of release.
    Tabelin CB; Hashimoto A; Igarashi T; Yoneda T
    Sci Total Environ; 2014 Mar; 473-474():244-53. PubMed ID: 24370699
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adsorption behavior of Mo(VI) from aqueous solutions using tungstate-modified magnetic nanoparticle.
    Abu Elgoud EM; Abd-Elhamid AI; Aly HF
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):18900-18915. PubMed ID: 38353819
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cotransport of bacteria with hematite in porous media: Effects of ion valence and humic acid.
    Yang H; Ge Z; Wu D; Tong M; Ni J
    Water Res; 2016 Jan; 88():586-594. PubMed ID: 26558710
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability.
    Chen L; Zhao X; Pan B; Zhang W; Hua M; Lv L; Zhang W
    J Hazard Mater; 2015 Mar; 284():35-42. PubMed ID: 25463215
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Determination of trace amounts of Se(IV) by hydride generation atomic fluorescence spectrometry after solid-phase extraction using magnetic multi-walled carbon nanotubes.
    Wang Y; Xie J; Wu Y; Hu X; Yang C; Xu Q
    Talanta; 2013 Aug; 112():123-8. PubMed ID: 23708547
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative evaluation of As, Se and V removal technologies for the treatment of oil refinery wastewater.
    Gillenwater PS; Urgun-Demirtas M; Negri MC; Snyder SW
    Water Sci Technol; 2012; 65(1):112-8. PubMed ID: 22173414
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adsorption of phosphate and nitrate anions on ammonium-functionalized MCM-48: effects of experimental conditions.
    Saad R; Belkacemi K; Hamoudi S
    J Colloid Interface Sci; 2007 Jul; 311(2):375-81. PubMed ID: 17451734
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preconcentration and speciation of ultra-trace Se (IV) and Se (VI) in environmental water samples with nano-sized TiO2 colloid and determination by HG-AFS.
    Fu J; Zhang X; Qian S; Zhang L
    Talanta; 2012 May; 94():167-71. PubMed ID: 22608430
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal.
    Zhang G; Qu J; Liu H; Liu R; Wu R
    Water Res; 2007 May; 41(9):1921-8. PubMed ID: 17382991
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of hydroxypropyl-β-cyclodextrin/polyethylene glycol 400, modified Fe3O4 nanoparticles for congo red removal.
    Yu L; Xue W; Cui L; Xing W; Cao X; Li H
    Int J Biol Macromol; 2014 Mar; 64():233-9. PubMed ID: 24333392
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spectroscopic study of Se(IV) removal from water by reductive precipitation using sulfide.
    Jung B; Safan A; Batchelor B; Abdel-Wahab A
    Chemosphere; 2016 Nov; 163():351-358. PubMed ID: 27552695
    [TBL] [Abstract][Full Text] [Related]  

  • 59. pH-dependence of selenate removal from liquid phase by reductive Fe(II)-Fe(III) hydroxysulfate compound, green rust.
    Hayashi H; Kanie K; Shinoda K; Muramatsu A; Suzuki S; Sasaki H
    Chemosphere; 2009 Jul; 76(5):638-43. PubMed ID: 19447467
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adsorption of Selenium and Strontium on Goethite: EXAFS Study and Surface Complexation Modeling of the Ternary Systems.
    Nie Z; Finck N; Heberling F; Pruessmann T; Liu C; Lützenkirchen J
    Environ Sci Technol; 2017 Apr; 51(7):3751-3758. PubMed ID: 28285518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.