These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 29131972)
61. Zerovalent iron encapsulated chitosan nanospheres - a novel adsorbent for the removal of total inorganic arsenic from aqueous systems. Gupta A; Yunus M; Sankararamakrishnan N Chemosphere; 2012 Jan; 86(2):150-5. PubMed ID: 22079302 [TBL] [Abstract][Full Text] [Related]
62. Sorption of selenium(IV) and selenium(VI) to mackinawite (FeS): effect of contact time, extent of removal, sorption envelopes. Han DS; Batchelor B; Abdel-Wahab A J Hazard Mater; 2011 Feb; 186(1):451-7. PubMed ID: 21112149 [TBL] [Abstract][Full Text] [Related]
63. Adsorption of arsenic species from water using activated siderite-hematite column filters. Guo H; Stüben D; Berner Z; Kramar U J Hazard Mater; 2008 Mar; 151(2-3):628-35. PubMed ID: 17640801 [TBL] [Abstract][Full Text] [Related]
64. Kinetics of cadmium(II) uptake by mixed maghemite-magnetite nanoparticles. Chowdhury SR; Yanful EK J Environ Manage; 2013 Nov; 129():642-51. PubMed ID: 24041626 [TBL] [Abstract][Full Text] [Related]
65. Effective and selective recovery of precious metals by thiourea modified magnetic nanoparticles. Lin TL; Lien HL Int J Mol Sci; 2013 May; 14(5):9834-47. PubMed ID: 23698770 [TBL] [Abstract][Full Text] [Related]
66. Influence of humic acid on the removal of arsenate and arsenic by ferric chloride: effects of pH, As/Fe ratio, initial As concentration, and co-existing solutes. Kong Y; Kang J; Shen J; Chen Z; Fan L Environ Sci Pollut Res Int; 2017 Jan; 24(3):2381-2393. PubMed ID: 27815852 [TBL] [Abstract][Full Text] [Related]
67. [Arsenic adsorption by magnetic adsorbent CuFe2O4]. Wu R; Qu J; Wu C Huan Jing Ke Xue; 2003 Sep; 24(5):60-4. PubMed ID: 14719262 [TBL] [Abstract][Full Text] [Related]
68. Synthesis of cross-linked chitosan and application to adsorption and speciation of Se (VI) and Se (IV) in environmental water samples by inductively coupled plasma optical emission spectrometry. Dai J; Ren FL; Tao CY; Bai Y Int J Mol Sci; 2011; 12(6):4009-20. PubMed ID: 21747721 [TBL] [Abstract][Full Text] [Related]
69. Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption. Yu L; Peng X; Ni F; Li J; Wang D; Luan Z J Hazard Mater; 2013 Feb; 246-247():10-7. PubMed ID: 23276789 [TBL] [Abstract][Full Text] [Related]
70. Removal and recovery of phosphate from water by calcium-silicate composites-novel adsorbents made from waste glass and shells. Jiang D; Amano Y; Machida M Environ Sci Pollut Res Int; 2017 Mar; 24(9):8210-8218. PubMed ID: 28155067 [TBL] [Abstract][Full Text] [Related]
71. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. Zhang QL; Lin YC; Chen X; Gao NY J Hazard Mater; 2007 Sep; 148(3):671-8. PubMed ID: 17434260 [TBL] [Abstract][Full Text] [Related]
72. Highly efficient As(III) removal in water using millimeter-sized porous granular MgO-biochar with high adsorption capacity. Chen T; Wei Y; Yang W; Liu C J Hazard Mater; 2021 Aug; 416():125822. PubMed ID: 34492784 [TBL] [Abstract][Full Text] [Related]
73. Effect of phosphate on the adsorption of Cu and Cd on natural hematite. Li W; Zhang S; Jiang W; Shan XQ Chemosphere; 2006 May; 63(8):1235-41. PubMed ID: 16325228 [TBL] [Abstract][Full Text] [Related]
74. Fabrication of magnetic porous Fe-Mn binary oxide nanowires with superior capability for removal of As(III) from water. Cui HJ; Cai JK; Zhao H; Yuan B; Ai CL; Fu ML J Hazard Mater; 2014 Aug; 279():26-31. PubMed ID: 25036997 [TBL] [Abstract][Full Text] [Related]
75. Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates. Dickson D; Liu G; Cai Y J Environ Manage; 2017 Jan; 186(Pt 2):261-267. PubMed ID: 27480915 [TBL] [Abstract][Full Text] [Related]
76. The adsorption of Sb(III) in aqueous solution by Fe2O3-modified carbon nanotubes. Yu T; Zeng C; Ye M; Shao Y Water Sci Technol; 2013; 68(3):658-64. PubMed ID: 23925195 [TBL] [Abstract][Full Text] [Related]
77. Effective aqueous arsenic removal using zero valent iron doped MWCNT synthesized by in situ CVD method using natural α-Fe Alijani H; Shariatinia Z Chemosphere; 2017 Mar; 171():502-511. PubMed ID: 28038422 [TBL] [Abstract][Full Text] [Related]
78. Cloud point extraction and electrothermal atomic absorption spectrometry of Se (IV)--3,3'-diaminobenzidine for the estimation of trace amounts of Se (IV) and Se (VI) in environmental water samples and total selenium in animal blood and fish tissue samples. Sounderajan S; Kumar GK; Udas AC J Hazard Mater; 2010 Mar; 175(1-3):666-72. PubMed ID: 19932563 [TBL] [Abstract][Full Text] [Related]
79. Impact of inorganic ions and natural organic matter on arsenates removal by ferrate(VI): Understanding a complex effect of phosphates ions. Kolařík J; Prucek R; Tuček J; Filip J; Sharma VK; Zbořil R Water Res; 2018 Sep; 141():357-365. PubMed ID: 29804022 [TBL] [Abstract][Full Text] [Related]
80. Magnetic nanopowder as effective adsorbent for the removal of Congo Red from aqueous solution. Paşka O; Ianoş R; Păcurariu C; Brădeanu A Water Sci Technol; 2014; 69(6):1234-40. PubMed ID: 24647189 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]