These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 29132029)

  • 1. Reconstruction of atomic force microscopy image using compressed sensing.
    Han G; Lin B; Lin Y
    Micron; 2018 Feb; 105():1-10. PubMed ID: 29132029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal sampling and reconstruction of undersampled atomic force microscope images using compressive sensing.
    Han G; Lin B
    Ultramicroscopy; 2018 Jun; 189():85-94. PubMed ID: 29626836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure assisted compressed sensing reconstruction of undersampled AFM images.
    Oxvig CS; Arildsen T; Larsen T
    Ultramicroscopy; 2017 Jan; 172():1-9. PubMed ID: 27721127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A continuous sampling pattern design algorithm for atomic force microscopy images.
    Luo Y; Andersson SB
    Ultramicroscopy; 2019 Jan; 196():167-179. PubMed ID: 30412842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive AFM imaging based on object detection using compressive sensing.
    Han G; Chen Y; Wu T; Li H; Luo J
    Micron; 2022 Mar; 154():103197. PubMed ID: 35058109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method to remove impulse noise from atomic force microscopy images based on Bayesian compressed sensing.
    Zhang Y; Li Y; Song Z; Wang Z; Qian J; Yao J
    Beilstein J Nanotechnol; 2019; 10():2346-2356. PubMed ID: 31886111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast scanning ion conductance microscopy imaging method using compressive sensing and low-discrepancy sequences.
    Wang Z; Zhuang J; Gao Z; Liao X
    Rev Sci Instrum; 2018 Nov; 89(11):113709. PubMed ID: 30501305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of atomic force microscopy image by using nanofabricated tip characterizer toward the actual sample surface topography.
    Xu M; Fujita D; Onishi K
    Rev Sci Instrum; 2009 Apr; 80(4):043703. PubMed ID: 19405662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of reconstruction methods for undersampled atomic force microscopy images.
    Luo Y; Andersson SB
    Nanotechnology; 2015 Dec; 26(50):505703. PubMed ID: 26585418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive block imaging based on compressive sensing in AFM.
    Zhang Y; Chen Y; Wu T; Han G
    Microsc Res Tech; 2024 Jun; ():. PubMed ID: 38877841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive under-sampling strategy for fast imaging in compressive sensing-based atomic force microscopy.
    Cheng P; Li Y; Lin R; Hu Y; Gao X; Qian J; Sun W; Yuan Q
    Ultramicroscopy; 2024 Jul; 261():113964. PubMed ID: 38579523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of a scanned topographic image distorted by the creep effect of a Z scanner in atomic force microscopy.
    Han C; Chung CC
    Rev Sci Instrum; 2011 May; 82(5):053709. PubMed ID: 21639509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a nano manipulator based on an atomic force microscope coupled with a haptic device: a novel manipulation tool for scanning electron microscopy.
    Iwata F; Kawanishi S; Aoyama H; Ushiki T
    Arch Histol Cytol; 2009; 72(4-5):271-8. PubMed ID: 21471662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing molecular simulation time for AFM images based on super-resolution methods.
    Dou Z; Qian J; Li Y; Lin R; Wang J; Cheng P; Xu Z
    Beilstein J Nanotechnol; 2021; 12():775-785. PubMed ID: 34386314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prior data assisted compressed sensing: a novel MR imaging strategy for real time tracking of lung tumors.
    Yip E; Yun J; Wachowicz K; Heikal AA; Gabos Z; Rathee S; Fallone BG
    Med Phys; 2014 Aug; 41(8):082301. PubMed ID: 25086550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving accuracy of sample surface topography by atomic force microscopy.
    Xu M; Fujita D; Onishi K; Miyazawa K
    J Nanosci Nanotechnol; 2009 Oct; 9(10):6003-7. PubMed ID: 19908487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT.
    Park JC; Song B; Kim JS; Park SH; Kim HK; Liu Z; Suh TS; Song WY
    Med Phys; 2012 Mar; 39(3):1207-17. PubMed ID: 22380351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of low-resolution molecular structures from simulated atomic force microscopy images.
    Dasgupta B; Miyashita O; Tama F
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129420. PubMed ID: 31472175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image reconstruction for sub-sampled atomic force microscopy images using deep neural networks.
    Luo Y; Andersson SB
    Micron; 2020 Mar; 130():102814. PubMed ID: 31931325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High resolution atomic force and Kelvin probe force microscopy image data of InAs(001) surface using frequency modulation method.
    Park YM; Park JS; Chung CH; Lee S
    Data Brief; 2020 Apr; 29():105177. PubMed ID: 32055662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.