BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 29132051)

  • 1. High-purity capture of CTCs based on micro-beads enhanced isolation by size of epithelial tumor cells (ISET) method.
    Sun N; Li X; Wang Z; Li Y; Pei R
    Biosens Bioelectron; 2018 Apr; 102():157-163. PubMed ID: 29132051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity.
    Lee A; Park J; Lim M; Sunkara V; Kim SY; Kim GH; Kim MH; Cho YK
    Anal Chem; 2014 Nov; 86(22):11349-56. PubMed ID: 25317565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).
    Hyun KA; Lee TY; Lee SH; Jung HI
    Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of a novel one-stop ISET device to capture CTCs and its clinical application.
    Chen F; Wang S; Fang Y; Zheng L; Zhi X; Cheng B; Chen Y; Zhang C; Shi D; Song H; Cai C; Zhou P; Xiong B
    Oncotarget; 2017 Jan; 8(2):3029-3041. PubMed ID: 27935872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics.
    Chen W; Allen SG; Reka AK; Qian W; Han S; Zhao J; Bao L; Keshamouni VG; Merajver SD; Fu J
    BMC Cancer; 2016 Aug; 16():614. PubMed ID: 27501846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter.
    Kim MS; Sim TS; Kim YJ; Kim SS; Jeong H; Park JM; Moon HS; Kim SI; Gurel O; Lee SS; Lee JG; Park JC
    Lab Chip; 2012 Aug; 12(16):2874-80. PubMed ID: 22684249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force.
    Huang SB; Wu MH; Lin YH; Hsieh CH; Yang CL; Lin HC; Tseng CP; Lee GB
    Lab Chip; 2013 Apr; 13(7):1371-83. PubMed ID: 23389102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-selective collection of circulating tumor cells using Vortex technology.
    Sollier E; Go DE; Che J; Gossett DR; O'Byrne S; Weaver WM; Kummer N; Rettig M; Goldman J; Nickols N; McCloskey S; Kulkarni RP; Di Carlo D
    Lab Chip; 2014 Jan; 14(1):63-77. PubMed ID: 24061411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic-Based Enrichment and Retrieval of Circulating Tumor Cells for RT-PCR Analysis.
    Gogoi P; Sepehri S; Chow W; Handique K; Wang Y
    Methods Mol Biol; 2017; 1634():55-64. PubMed ID: 28819840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip.
    Huang T; Jia CP; Jun-Yang ; Sun WJ; Wang WT; Zhang HL; Cong H; Jing FX; Mao HJ; Jin QH; Zhang Z; Chen YJ; Li G; Mao GX; Zhao JL
    Biosens Bioelectron; 2014 Jan; 51():213-8. PubMed ID: 23962709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances and prospects in the isolation by size of epithelial tumor cells (ISET) methodology.
    Ma YC; Wang L; Yu FL
    Technol Cancer Res Treat; 2013 Aug; 12(4):295-309. PubMed ID: 23448577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wedge-shaped microfluidic chip for circulating tumor cells isolation and its clinical significance in gastric cancer.
    Yang C; Zhang N; Wang S; Shi D; Zhang C; Liu K; Xiong B
    J Transl Med; 2018 May; 16(1):139. PubMed ID: 29792200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Separation of Circulating Tumor Cells Based on Size and Deformability.
    Park ES; Duffy SP; Ma H
    Methods Mol Biol; 2017; 1634():21-32. PubMed ID: 28819838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'.
    Chikaishi Y; Yoneda K; Ohnaga T; Tanaka F
    Oncol Rep; 2017 Jan; 37(1):77-82. PubMed ID: 27840987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High purity microfluidic sorting and in situ inactivation of circulating tumor cells based on multifunctional magnetic composites.
    Xu H; Dong B; Xu S; Xu S; Sun X; Sun J; Yang Y; Xu L; Bai X; Zhang S; Yin Z; Song H
    Biomaterials; 2017 Sep; 138():69-79. PubMed ID: 28554009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip.
    Sheng W; Ogunwobi OO; Chen T; Zhang J; George TJ; Liu C; Fan ZH
    Lab Chip; 2014 Jan; 14(1):89-98. PubMed ID: 24220648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly dense, optically inactive silica microbeads for the isolation and identification of circulating tumor cells.
    Yoo CE; Moon HS; Kim YJ; Park JM; Park D; Han KY; Park K; Sun JM; Park WY
    Biomaterials; 2016 Jan; 75():271-278. PubMed ID: 26513419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Recent advances in isolation and detection of circulating tumor cells with a microfluidic system].
    Cao R; Zhang M; Yu H; Qin J
    Se Pu; 2022 Mar; 40(3):213-223. PubMed ID: 35243831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic platform for high-purity separating circulating tumor cells at the single-cell level.
    Wang K; Zhou L; Zhao S; Cheng Z; Qiu S; Lu Y; Wu Z; Abdel Wahab AHA; Mao H; Zhao J
    Talanta; 2019 Aug; 200():169-176. PubMed ID: 31036170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells.
    Lin M; Chen JF; Lu YT; Zhang Y; Song J; Hou S; Ke Z; Tseng HR
    Acc Chem Res; 2014 Oct; 47(10):2941-50. PubMed ID: 25111636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.