BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 2913206)

  • 1. Structural and functional properties of reticulospinal neurons in the early-swimming stage Xenopus embryo.
    van Mier P; ten Donkelaar HJ
    J Neurosci; 1989 Jan; 9(1):25-37. PubMed ID: 2913206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control.
    Soffe SR; Roberts A; Li WC
    J Physiol; 2009 Oct; 587(Pt 20):4829-44. PubMed ID: 19703959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early development of descending pathways from the brain stem to the spinal cord in Xenopus laevis.
    van Mier P; ten Donkelaar HJ
    Anat Embryol (Berl); 1984; 170(3):295-306. PubMed ID: 6335361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Descending Dopaminergic Inputs to Reticulospinal Neurons Promote Locomotor Movements.
    Ryczko D; Grätsch S; Alpert MH; Cone JJ; Kasemir J; Ruthe A; Beauséjour PA; Auclair F; Roitman MF; Alford S; Dubuc R
    J Neurosci; 2020 Oct; 40(44):8478-8490. PubMed ID: 32998974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Descending projections and excitation during fictive swimming in Xenopus embryos: neuroanatomy and lesion experiments.
    Roberts A; Alford ST
    J Comp Neurol; 1986 Aug; 250(2):253-61. PubMed ID: 3745515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tonic and phasic synaptic input to spinal cord motoneurons during fictive locomotion in frog embryos.
    Soffe SR; Roberts A
    J Neurophysiol; 1982 Dec; 48(6):1279-88. PubMed ID: 6296327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activities of identified interneurons, motoneurons, and muscle fibers during fictive swimming in the lamprey and effects of reticulospinal and dorsal cell stimulation.
    Buchanan JT; Cohen AH
    J Neurophysiol; 1982 May; 47(5):948-60. PubMed ID: 7086476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central synapses of spinal motoneurons innervating the trunk swimming muscles of Xenopus laevis embryos.
    Roberts A; Walford A
    Acta Biol Hung; 1996; 47(1-4):371-84. PubMed ID: 9124006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of early swimming in Xenopus laevis embryos: myotomal musculature, its innervation and activation.
    van Mier P; Armstrong J; Roberts A
    Neuroscience; 1989; 32(1):113-26. PubMed ID: 2586744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of reticulospinal neurons during locomotion in the freely behaving lamprey.
    Deliagina TG; Zelenin PV; Fagerstedt P; Grillner S; Orlovsky GN
    J Neurophysiol; 2000 Feb; 83(2):853-63. PubMed ID: 10669499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic potentials in motoneurons during fictive swimming in spinal Xenopus embryos.
    Roberts A; Dale N; Evoy WH; Soffe SR
    J Neurophysiol; 1985 Jul; 54(1):1-10. PubMed ID: 2993537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local effects of glycinergic inhibition in the spinal cord motor systems for swimming in amphibian embryos.
    Perrins R; Soffe SR
    J Neurophysiol; 1996 Aug; 76(2):1025-35. PubMed ID: 8871217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reticulospinal neurons, locomotor control and the development of tailswimming in Xenopus.
    van Mier P
    Acta Biol Hung; 1988; 39(2-3):161-77. PubMed ID: 3077003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of the reticulospinal system on locomotion in lamprey.
    Wannier T; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1998 Jul; 80(1):103-12. PubMed ID: 9658032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positive feedback as a general mechanism for sustaining rhythmic and non-rhythmic activity.
    Roberts A; Perrins R
    J Physiol Paris; 1995; 89(4-6):241-8. PubMed ID: 8861822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity of commissural interneurons in spinal cord of Xenopus embryos.
    Soffe SR; Clarke JD; Roberts A
    J Neurophysiol; 1984 Jun; 51(6):1257-67. PubMed ID: 6737030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activities of spinal neurons during brain stem-dependent fictive swimming in lamprey.
    Buchanan JT; Kasicki S
    J Neurophysiol; 1995 Jan; 73(1):80-7. PubMed ID: 7714592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dorsal and ventral myotome motoneurons and their input during fictive locomotion in lamprey.
    Wallén P; Grillner S; Feldman JL; Bergelt S
    J Neurosci; 1985 Mar; 5(3):654-61. PubMed ID: 3973690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and physiological properties of connections between individual reticulospinal axons and lumbar motoneurons of the frog.
    Dityatev AE; Chmykhova NM; Dityateva GV; Babalian AL; Kleinle J; Clamann HP
    J Comp Neurol; 2001 Feb; 430(4):433-47. PubMed ID: 11169478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of interneurons with contralateral, caudal axons in the lamprey spinal cord: synaptic interactions and morphology.
    Buchanan JT
    J Neurophysiol; 1982 May; 47(5):961-75. PubMed ID: 6177842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.