These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29132082)

  • 1. Increased suppression of methane production by humic substances in response to warming in anoxic environments.
    Tan W; Jia Y; Huang C; Zhang H; Li D; Zhao X; Wang G; Jiang J; Xi B
    J Environ Manage; 2018 Jan; 206():602-606. PubMed ID: 29132082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland.
    Valenzuela EI; Prieto-Davó A; López-Lozano NE; Hernández-Eligio A; Vega-Alvarado L; Juárez K; García-González AS; López MG; Cervantes FJ
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28341676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effects of warming and humic substances on driving arsenic reduction and methanogenesis in flooded paddy soil.
    Hemmat-Jou MH; Gao R; Chen G; Liang Y; Li F; Fang L
    J Hazard Mater; 2024 Sep; 476():134947. PubMed ID: 38908180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production.
    Sihi D; Inglett PW; Gerber S; Inglett KS
    Glob Chang Biol; 2018 Jan; 24(1):e259-e274. PubMed ID: 28746792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature sensitivity of anaerobic methane oxidation versus methanogenesis in paddy soil: Implications for the CH
    Fan L; Dippold MA; Thiel V; Ge T; Wu J; Kuzyakov Y; Dorodnikov M
    Glob Chang Biol; 2022 Jan; 28(2):654-664. PubMed ID: 34653297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.
    Gill AL; Giasson MA; Yu R; Finzi AC
    Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trimethylamine stimulated and dissolved organic matter inhibited methane production in sediment from the Poyang Lake, China.
    Wang J; Liu C; Gong X; Liu Y; Chen C
    Environ Technol; 2016 Oct; 37(20):2545-54. PubMed ID: 26895174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geographical pattern of methanogenesis in paddy and wetland soils across eastern China.
    Hao X; Jiao S; Lu Y
    Sci Total Environ; 2019 Feb; 651(Pt 1):281-290. PubMed ID: 30243161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature response of denitrification rate and greenhouse gas production in agricultural river marginal wetland soils.
    Bonnett SA; Blackwell MS; Leah R; Cook V; O'Connor M; Maltby E
    Geobiology; 2013 May; 11(3):252-67. PubMed ID: 23480257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of oxygen in stimulating methane production in wetlands.
    Wilmoth JL; Schaefer JK; Schlesinger DR; Roth SW; Hatcher PG; Shoemaker JK; Zhang X
    Glob Chang Biol; 2021 Nov; 27(22):5831-5847. PubMed ID: 34409684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The thermal response of soil microbial methanogenesis decreases in magnitude with changing temperature.
    Chen H; Zhu T; Li B; Fang C; Nie M
    Nat Commun; 2020 Nov; 11(1):5733. PubMed ID: 33184291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic respiration pathways and response to increased substrate availability of Arctic wetland soils.
    Philben M; Zhang L; Yang Z; Taş N; Wullschleger SD; Graham DE; Gu B
    Environ Sci Process Impacts; 2020 Oct; 22(10):2070-2083. PubMed ID: 33084697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous measurements of dissolved CH
    Pal DS; Tripathee R; Reid MC; Schäfer KVR; Jaffé PR
    Environ Monit Assess; 2018 Feb; 190(3):176. PubMed ID: 29484491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales.
    Bridgham SD; Cadillo-Quiroz H; Keller JK; Zhuang Q
    Glob Chang Biol; 2013 May; 19(5):1325-46. PubMed ID: 23505021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron shuttling mediated by humic substances fuels anaerobic methane oxidation and carbon burial in wetland sediments.
    Valenzuela EI; Avendaño KA; Balagurusamy N; Arriaga S; Nieto-Delgado C; Thalasso F; Cervantes FJ
    Sci Total Environ; 2019 Feb; 650(Pt 2):2674-2684. PubMed ID: 30373050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska.
    Roy Chowdhury T; Herndon EM; Phelps TJ; Elias DA; Gu B; Liang L; Wullschleger SD; Graham DE
    Glob Chang Biol; 2015 Feb; 21(2):722-37. PubMed ID: 25308891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances.
    Zhou S; Xu J; Yang G; Zhuang L
    FEMS Microbiol Ecol; 2014 Apr; 88(1):107-20. PubMed ID: 24372096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warmer temperature accelerates methane emissions from the Zoige wetland on the Tibetan Plateau without changing methanogenic community composition.
    Cui M; Ma A; Qi H; Zhuang X; Zhuang G; Zhao G
    Sci Rep; 2015 Jun; 5():11616. PubMed ID: 26109512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular quinones affecting methane production and methanogenic community in paddy soil.
    Xu J; Zhuang L; Yang G; Yuan Y; Zhou S
    Microb Ecol; 2013 Nov; 66(4):950-60. PubMed ID: 23913198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Humic Substances Facilitate Arsenic Reduction and Release in Flooded Paddy Soil.
    Qiao J; Li X; Li F; Liu T; Young LY; Huang W; Sun K; Tong H; Hu M
    Environ Sci Technol; 2019 May; 53(9):5034-5042. PubMed ID: 30942579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.