These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29132105)

  • 1. Viscoelastic drops moving on hydrophilic and superhydrophobic surfaces.
    Xu H; Clarke A; Rothstein JP; Poole RJ
    J Colloid Interface Sci; 2018 Mar; 513():53-61. PubMed ID: 29132105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of drops on slippery lubricant-infused surfaces.
    Schellenberger F; Xie J; Encinas N; Hardy A; Klapper M; Papadopoulos P; Butt HJ; Vollmer D
    Soft Matter; 2015 Oct; 11(38):7617-26. PubMed ID: 26291621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.
    Ramos SM; Dias JF; Canut B
    J Colloid Interface Sci; 2015 Feb; 440():133-9. PubMed ID: 25460699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water drop friction on superhydrophobic surfaces.
    Olin P; Lindström SB; Pettersson T; Wågberg L
    Langmuir; 2013 Jul; 29(29):9079-89. PubMed ID: 23721176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet impact on soft viscoelastic surfaces.
    Chen L; Bonaccurso E; Deng P; Zhang H
    Phys Rev E; 2016 Dec; 94(6-1):063117. PubMed ID: 28085484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drop shedding by shear flow for hydrophilic to superhydrophobic surfaces.
    Milne AJ; Amirfazli A
    Langmuir; 2009 Dec; 25(24):14155-64. PubMed ID: 19685896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaporative properties and pinning strength of laser-ablated, hydrophilic sites on lotus-leaf-like, nanostructured surfaces.
    McLauchlin ML; Yang D; Aella P; Garcia AA; Picraux ST; Hayes MA
    Langmuir; 2007 Apr; 23(9):4871-7. PubMed ID: 17381139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetting of soft superhydrophobic micropillar arrays.
    Papadopoulos P; Pinchasik BE; Tress M; Vollmer D; Kappl M; Butt HJ
    Soft Matter; 2018 Sep; 14(36):7429-7434. PubMed ID: 30183043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic wetting of Newtonian and viscoelastic fluids on microstructured surfaces.
    Wang X; Yan X; Du J; Chen F; Yu F; Tao R; Wang S; Min Q
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):2098-2107. PubMed ID: 37699328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic wetting of dilute polymer solutions: the case of impacting droplets.
    Bertola V
    Adv Colloid Interface Sci; 2013 Jun; 193-194():1-11. PubMed ID: 23597730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drop dynamics on hydrophobic and superhydrophobic surfaces.
    Mognetti BM; Kusumaatmaja H; Yeomans JM
    Faraday Discuss; 2010; 146():153-65; discussion 195-215, 395-403. PubMed ID: 21043420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the drop impact on moving hydrophilic and hydrophobic surfaces.
    Almohammadi H; Amirfazli A
    Soft Matter; 2017 Mar; 13(10):2040-2053. PubMed ID: 28198895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueous dispersions of lipid nanoparticles wet hydrophobic and superhydrophobic surfaces.
    Kumar M; Kulkarni MA; Chembu NG; Banpurkar A; Kumaraswamy G
    Soft Matter; 2018 Jan; 14(2):205-215. PubMed ID: 29243764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant drag reduction in complex fluid drops on rough hydrophobic surfaces.
    Luu LH; Forterre Y
    Phys Rev Lett; 2013 May; 110(18):184501. PubMed ID: 23683201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing the performance of superhydrophobic aluminum surfaces.
    Ruiz-Cabello FJM; Ibáñez-Ibáñez PF; Gómez-Lopera JF; Martínez-Aroza J; Cabrerizo-Vílchez M; Rodríguez-Valverde MA
    J Colloid Interface Sci; 2017 Dec; 508():129-136. PubMed ID: 28822862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water Touch-and-Bounce from a Soft Viscoelastic Substrate: Wetting, Dewetting, and Rebound on Bitumen.
    Lee JB; Dos Santos S; Antonini C
    Langmuir; 2016 Aug; 32(32):8245-54. PubMed ID: 27452333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact angle hysteresis on superhydrophobic surfaces: an ionic liquid probe fluid offers mechanistic insight.
    Krumpfer JW; Bian P; Zheng P; Gao L; McCarthy TJ
    Langmuir; 2011 Mar; 27(6):2166-9. PubMed ID: 21271691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.