These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29132105)

  • 21. Structure irregularity impedes drop roll-off at superhydrophobic surfaces.
    Larsen ST; Andersen NK; Søgaard E; Taboryski R
    Langmuir; 2014 May; 30(17):5041-5. PubMed ID: 24735125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of polymer additives on the wetting of impacting droplets.
    Smith MI; Bertola V
    Phys Rev Lett; 2010 Apr; 104(15):154502. PubMed ID: 20481995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drop behavior on a thermally-stripped acrylic polymer: influence of surface tension induced wetting ridge formation on retention and running.
    Pu G; Ai J; Severtson SJ
    Langmuir; 2010 Aug; 26(15):12696-702. PubMed ID: 20608687
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of fluid viscosity and wetting on multiscale viscoelastic lubrication in soft tribological contacts.
    Selway N; Chan V; Stokes JR
    Soft Matter; 2017 Feb; 13(8):1702-1715. PubMed ID: 28164206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning Drop Motion by Chemical Chessboard-Patterned Surfaces: A Many-Body Dissipative Particle Dynamics Study.
    Lin C; Chen S; Xiao L; Liu Y
    Langmuir; 2018 Feb; 34(8):2708-2715. PubMed ID: 29389135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Is a Knowledge of Surface Topology and Contact Angles Enough to Define the Drop Impact Outcome?
    Malavasi I; Veronesi F; Caldarelli A; Zani M; Raimondo M; Marengo M
    Langmuir; 2016 Jun; 32(25):6255-62. PubMed ID: 27228028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy Dissipation of Moving Drops on Superhydrophobic and Superoleophobic Surfaces.
    Butt HJ; Gao N; Papadopoulos P; Steffen W; Kappl M; Berger R
    Langmuir; 2017 Jan; 33(1):107-116. PubMed ID: 28001428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mobility of Aqueous and Binary Mixture Drops on Lubricating Fluid-Coated Slippery Surfaces.
    Sharma M; Roy PK; Barman J; Khare K
    Langmuir; 2019 Jun; 35(24):7672-7679. PubMed ID: 31117726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lateral migration of viscoelastic droplets in a viscoelastic confined flow: role of discrete phase viscoelasticity.
    Hazra S; Mitra SK; Sen AK
    Soft Matter; 2019 Nov; 15(44):9003-9010. PubMed ID: 31675049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires.
    Seo J; Lee S; Lee J; Lee T
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4722-9. PubMed ID: 22091585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Induced detachment of coalescing droplets on superhydrophobic surfaces.
    Farhangi MM; Graham PJ; Choudhury NR; Dolatabadi A
    Langmuir; 2012 Jan; 28(2):1290-303. PubMed ID: 22171956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface Tension and Viscosity Dependence of Slip Length over Irregularly Structured Superhydrophobic Surfaces.
    Zhang L; Mehanna YA; Crick CR; Poole RJ
    Langmuir; 2022 Oct; 38(39):11873-11881. PubMed ID: 36125335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio.
    Kim JH; Rothstein JP
    Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Why Drops Bounce on Smooth Surfaces.
    Tadmor R; Yadav SB; Gulec S; Leh A; Dang L; N'guessan HE; Das R; Turmine M; Tadmor M
    Langmuir; 2018 Apr; 34(15):4695-4700. PubMed ID: 29510056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrical switching of wetting states on superhydrophobic surfaces: a route towards reversible Cassie-to-Wenzel transitions.
    Manukyan G; Oh JM; van den Ende D; Lammertink RG; Mugele F
    Phys Rev Lett; 2011 Jan; 106(1):014501. PubMed ID: 21231746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Why can organic liquids move easily on smooth alkyl-terminated surfaces?
    Urata C; Masheder B; Cheng DF; Miranda DF; Dunderdale GJ; Miyamae T; Hozumi A
    Langmuir; 2014 Apr; 30(14):4049-55. PubMed ID: 24660770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The rheology of aqueous solutions of ethyl hydroxy-ethyl cellulose (EHEC) and its hydrophobically modified analogue (hmEHEC): extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer.
    Sharma V; Haward SJ; Serdy J; Keshavarz B; Soderlund A; Threlfall-Holmes P; McKinley GH
    Soft Matter; 2015 Apr; 11(16):3251-70. PubMed ID: 25782987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method.
    Ensikat HJ; Mayser M; Barthlott W
    Langmuir; 2012 Oct; 28(40):14338-46. PubMed ID: 22978578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.