These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 29132112)
21. Development of near infrared spectroscopic calibration models for in-line determination of low drug concentration, bulk density, and relative specific void volume within a feed frame. Ortega-Zúñiga C; la Rosa CP; Román-Ospino AD; Serrano-Vargas A; Romañach RJ; Méndez R J Pharm Biomed Anal; 2019 Feb; 164():211-222. PubMed ID: 30391810 [TBL] [Abstract][Full Text] [Related]
22. Development of an in-line Raman spectroscopic method for continuous API quantification during twin-screw wet granulation. Harting J; Kleinebudde P Eur J Pharm Biopharm; 2018 Apr; 125():169-181. PubMed ID: 29408520 [TBL] [Abstract][Full Text] [Related]
23. Real-time assessment of critical quality attributes of a continuous granulation process. Fonteyne M; Vercruysse J; Díaz DC; Gildemyn D; Vervaet C; Remon JP; De Beer T Pharm Dev Technol; 2013 Feb; 18(1):85-97. PubMed ID: 22023327 [TBL] [Abstract][Full Text] [Related]
24. In-line quantification of drug and excipients in cohesive powder blends by near infrared spectroscopy. Liew CV; Karande AD; Heng PW Int J Pharm; 2010 Feb; 386(1-2):138-48. PubMed ID: 19922776 [TBL] [Abstract][Full Text] [Related]
26. Optimization of a pharmaceutical tablet formulation based on a design space approach and using vibrational spectroscopy as PAT tool. Chavez PF; Lebrun P; Sacré PY; De Bleye C; Netchacovitch L; Cuypers S; Mantanus J; Motte H; Schubert M; Evrard B; Hubert P; Ziemons E Int J Pharm; 2015; 486(1-2):13-20. PubMed ID: 25791761 [TBL] [Abstract][Full Text] [Related]
27. Optimisation of an in-line Raman spectroscopic method for continuous API quantification during twin-screw wet granulation and its application for process characterisation. Harting J; Kleinebudde P Eur J Pharm Biopharm; 2019 Apr; 137():77-85. PubMed ID: 30794855 [TBL] [Abstract][Full Text] [Related]
28. Machine Learning-Enabled NIR Spectroscopy in Assessing Powder Blend Uniformity: Clear-Up Disparities and Biases Induced by Physical Artefacts. Muthudoss P; Tewari I; Chi RLR; Young KJ; Ann EYC; Hui DNS; Khai OY; Allada R; Rao M; Shahane S; Das S; Babla I; Mhetre S; Paudel A AAPS PharmSciTech; 2022 Oct; 23(7):277. PubMed ID: 36229571 [TBL] [Abstract][Full Text] [Related]
29. Homogeneity of amorphous solid dispersions - an example with KinetiSol Jermain SV; Miller D; Spangenberg A; Lu X; Moon C; Su Y; Williams RO Drug Dev Ind Pharm; 2019 May; 45(5):724-735. PubMed ID: 30653376 [TBL] [Abstract][Full Text] [Related]
30. Effects of electrostatic charging on pharmaceutical powder blending homogeneity. Pu Y; Mazumder M; Cooney C J Pharm Sci; 2009 Jul; 98(7):2412-21. PubMed ID: 18855912 [TBL] [Abstract][Full Text] [Related]
31. Characterisation of transmission Raman spectroscopy for rapid quantitative analysis of intact multi-component pharmaceutical capsules. Hargreaves MD; Macleod NA; Smith MR; Andrews D; Hammond SV; Matousek P J Pharm Biomed Anal; 2011 Feb; 54(3):463-8. PubMed ID: 20947277 [TBL] [Abstract][Full Text] [Related]
32. PAT tools for the control of co-extrusion implants manufacturing process. Krier F; Mantanus J; Sacré PY; Chavez PF; Thiry J; Pestieau A; Rozet E; Ziemons E; Hubert P; Evrard B Int J Pharm; 2013 Dec; 458(1):15-24. PubMed ID: 24148661 [TBL] [Abstract][Full Text] [Related]
33. Development of a directly correlated Raman and uHPLC-MS content uniformity method for dry powder inhalers through statistical design, chemometrics and mathematical modeling. Seabrooks L; Canfield N; Pennington J Drug Dev Ind Pharm; 2016 Sep; 42(9):1515-23. PubMed ID: 26902663 [TBL] [Abstract][Full Text] [Related]
34. In-line monitoring of a pharmaceutical blending process using FT-Raman spectroscopy. Vergote GJ; De Beer TR; Vervaet C; Remon JP; Baeyens WR; Diericx N; Verpoort F Eur J Pharm Sci; 2004 Mar; 21(4):479-85. PubMed ID: 14998578 [TBL] [Abstract][Full Text] [Related]
35. Cleaning of direct compression continuous manufacturing equipment through displacement of API residues by excipients. Patel DS; Méndez R; Romañach RJ Int J Pharm; 2024 Mar; 652():123849. PubMed ID: 38266938 [TBL] [Abstract][Full Text] [Related]
36. In-line ATR-UV and Raman Spectroscopy for Monitoring API Dissolution Process During Liquid-Filled Soft-Gelatin Capsule Manufacturing. Wan B; Zordan CA; Lu X; McGeorge G AAPS PharmSciTech; 2016 Oct; 17(5):1173-81. PubMed ID: 26604007 [TBL] [Abstract][Full Text] [Related]
37. Development of a Near Infrared Spectroscopy method for the in-line quantitative bilastine drug determination during pharmaceutical powders blending. Biagi D; Nencioni P; Valleri M; Calamassi N; Mura P J Pharm Biomed Anal; 2021 Sep; 204():114277. PubMed ID: 34332309 [TBL] [Abstract][Full Text] [Related]
38. The influence of high shear mixing on ternary dry powder inhaler formulations. Hertel M; Schwarz E; Kobler M; Hauptstein S; Steckel H; Scherließ R Int J Pharm; 2017 Dec; 534(1-2):242-250. PubMed ID: 29051120 [TBL] [Abstract][Full Text] [Related]
39. Assessment of blend uniformity in a continuous tablet manufacturing process. Sierra-Vega NO; Román-Ospino A; Scicolone J; Muzzio FJ; Romañach RJ; Méndez R Int J Pharm; 2019 Apr; 560():322-333. PubMed ID: 30763679 [TBL] [Abstract][Full Text] [Related]
40. An investigation into the impact of magnesium stearate on powder feeding during roller compaction. Dawes J; Gamble JF; Greenwood R; Robbins P; Tobyn M Drug Dev Ind Pharm; 2012 Jan; 38(1):111-22. PubMed ID: 21810064 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]