These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29132115)

  • 1. Comparative interfacial in vitro digestion of protein and polysaccharide oil/water films.
    Bellesi FA; Ruiz-Henestrosa VMP; Maldonado-Valderrama J; Del Castillo Santaella T; Pilosof AMR
    Colloids Surf B Biointerfaces; 2018 Jan; 161():547-554. PubMed ID: 29132115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of interfacial and bulk properties of cellulose ethers on lipolysis of oil-in-water emulsions.
    Torcello-Gómez A; Foster TJ
    Carbohydr Polym; 2016 Jun; 144():495-503. PubMed ID: 27083841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of interfacial composition on emulsion digestion and rate of lipid hydrolysis using different in vitro digestion models.
    Malaki Nik A; Wright AJ; Corredig M
    Colloids Surf B Biointerfaces; 2011 Apr; 83(2):321-30. PubMed ID: 21194901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the interactions between bile salts and food emulsifiers under in vitro duodenal digestion conditions to evaluate their bile salt binding potential.
    Naso JN; Bellesi FA; Pizones Ruiz-Henestrosa VM; Pilosof AMR
    Colloids Surf B Biointerfaces; 2019 Feb; 174():493-500. PubMed ID: 30497011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bile salts in digestion and transport of lipids.
    Macierzanka A; Torcello-Gómez A; Jungnickel C; Maldonado-Valderrama J
    Adv Colloid Interface Sci; 2019 Dec; 274():102045. PubMed ID: 31689682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial design of protein-stabilized emulsions for optimal delivery of nutrients.
    Malaki Nik A; Wright AJ; Corredig M
    Food Funct; 2010 Nov; 1(2):141-8. PubMed ID: 21776464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-in-oil microemulsions versus emulsions as carriers of hydroxytyrosol: an in vitro gastrointestinal lipolysis study using the pHstat technique.
    Chatzidaki MD; Mateos-Diaz E; Leal-Calderon F; Xenakis A; Carrière F
    Food Funct; 2016 May; 7(5):2258-69. PubMed ID: 27164003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro Digestion of Emulsions in a Single Droplet via Multi Subphase Exchange of Simulated Gastrointestinal Fluids.
    Maldonado-Valderrama J; Del Castillo Santaella T; Holgado-Terriza JA; Cabrerizo-Vílchez MÁ
    J Vis Exp; 2022 Nov; (189):. PubMed ID: 36468696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physicochemical behaviour of WPI-stabilized emulsions in in vitro gastric and intestinal conditions.
    Li J; Ye A; Lee SJ; Singh H
    Colloids Surf B Biointerfaces; 2013 Nov; 111():80-7. PubMed ID: 23792544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium Alters the Interfacial Organization of Hydrolyzed Lipids during Intestinal Digestion.
    Torcello-Gómez A; Boudard C; Mackie AR
    Langmuir; 2018 Jun; 34(25):7536-7544. PubMed ID: 29870262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial characterization of beta-lactoglobulin networks: displacement by bile salts.
    Maldonado-Valderrama J; Woodward NC; Gunning AP; Ridout MJ; Husband FA; Mackie AR; Morris VJ; Wilde PJ
    Langmuir; 2008 Jun; 24(13):6759-67. PubMed ID: 18533634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial behaviour of biopolymer multilayers: Influence of in vitro digestive conditions.
    Corstens MN; Osorio Caltenco LA; de Vries R; Schroën K; Berton-Carabin CC
    Colloids Surf B Biointerfaces; 2017 May; 153():199-207. PubMed ID: 28242373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competitive adsorption between sugar beet pectin (SBP) and hydroxypropyl methylcellulose (HPMC) at the oil/water interface.
    Li X; Al-Assaf S; Fang Y; Phillips GO
    Carbohydr Polym; 2013 Jan; 91(2):573-80. PubMed ID: 23121947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic Modeling of
    Infantes-Garcia MR; Verkempinck SHE; Hendrickx ME; Grauwet T
    J Agric Food Chem; 2021 Apr; 69(16):4708-4719. PubMed ID: 33856215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bile salt content of human bile impacts on simulated intestinal proteolysis of β-lactoglobulin.
    Dulko D; Staroń R; Krupa L; Rigby NM; Mackie AR; Gutkowski K; Wasik A; Macierzanka A
    Food Res Int; 2021 Jul; 145():110413. PubMed ID: 34112416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial behaviour of β-lactoglobulin aggregates at the oil-water interface studied using particle tracking and dilatational rheology.
    Yang N; Ye J; Li J; Hu B; Leheny RL; Nishinari K; Fang Y
    Soft Matter; 2021 Mar; 17(10):2973-2984. PubMed ID: 33595572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of interfacial protein cross-linking on the in vitro digestibility of emulsified corn oil by pancreatic lipase.
    Sandra S; Decker EA; McClements DJ
    J Agric Food Chem; 2008 Aug; 56(16):7488-94. PubMed ID: 18605732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behaviour of protein-stabilised emulsions under various physiological conditions.
    Singh H; Sarkar A
    Adv Colloid Interface Sci; 2011 Jun; 165(1):47-57. PubMed ID: 21377641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of gastric conditions on β-lactoglobulin interfacial networks: influence of the oil phase on protein structure.
    Maldonado-Valderrama J; Miller R; Fainerman VB; Wilde PJ; Morris VJ
    Langmuir; 2010 Oct; 26(20):15901-8. PubMed ID: 20857971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of lipophilic molecules during in vitro digestion of soy protein-stabilized emulsions.
    Nik AM; Corredig M; Wright AJ
    Mol Nutr Food Res; 2011 Sep; 55 Suppl 2():S278-89. PubMed ID: 21638776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.