BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2913212)

  • 1. Aplysia synaptosomes. I. Preparation and biochemical and morphological characterization of subcellular membrane fractions.
    Chin GJ; Shapiro E; Vogel SS; Schwartz JH
    J Neurosci; 1989 Jan; 9(1):38-48. PubMed ID: 2913212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aplysia synaptosomes. II. Release of transmitters.
    Chin GJ; Shapiro E; Schwartz JH
    J Neurosci; 1989 Jan; 9(1):49-55. PubMed ID: 2563280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions.
    Dunkley PR; Heath JW; Harrison SM; Jarvie PE; Glenfield PJ; Rostas JA
    Brain Res; 1988 Feb; 441(1-2):59-71. PubMed ID: 2834006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. G proteins in Aplysia: biochemical characterization and regional and subcellular distribution.
    Vogel SS; Chin GJ; Mumby SM; Schonberg M; Schwartz JH
    Brain Res; 1989 Jan; 478(2):281-92. PubMed ID: 2493963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of bombesin-like immunoreactivity from synaptosomal membranes isolated from the rat ileum.
    Kurjak M; Allescher HD; Schusdziarra V; Classen M
    Eur J Pharmacol; 1994 May; 257(1-2):169-79. PubMed ID: 8082699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved method of preparing rat brain synaptic membranes. Elimination of a contaminating membrane containing 2',3'-cyclic nucleotide 3'-phosphohydrolase activity.
    Mena EE; Hoeser CA; Moore BW
    Brain Res; 1980 Apr; 188(1):207-31. PubMed ID: 6245753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid method for isolation of synaptosomes on Percoll gradients.
    Dunkley PR; Jarvie PE; Heath JW; Kidd GJ; Rostas JA
    Brain Res; 1986 Apr; 372(1):115-29. PubMed ID: 3011205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of early and late postnatal hypoxia on subcellular synaptosomal fractions from cerebral cortex of rats. II. A quantitative ultrastructural study.
    Meyer U; Ihle W; Moller R; Odarjuk J; Wenzel J; Gross J
    J Hirnforsch; 1986; 27(3):257-67. PubMed ID: 3760541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular fractionation on Percoll gradient of mossy fiber synaptosomes: morphological and biochemical characterization in control and degranulated rat hippocampus.
    Taupin P; Zini S; Cesselin F; Ben-Ari Y; Roisin MP
    J Neurochem; 1994 Apr; 62(4):1586-95. PubMed ID: 7907653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ADP-ribosylation of cerebrocortical synaptosomal proteins by cholera, pertussis and botulinum toxins.
    Ashton AC; Edwards K; Dolly JO
    Toxicon; 1990; 28(8):963-73. PubMed ID: 1981953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two fractions enriched for striatal synaptosomes isolated by percoll gradient centrifugation: synaptosome morphology, dopamine and serotonin receptor distribution, and adenylate cyclase activity.
    Robinson PJ; Gehlert DR; Sanna E; Hanbauer I
    Neurochem Int; 1989; 15(3):339-48. PubMed ID: 20504504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of chick brain synaptosomes and synaptosomal membranes.
    Babitch JA; Breithaupt TB; Chiu TC; Garadi R; Helseth DL
    Biochim Biophys Acta; 1976 Apr; 433(1):75-89. PubMed ID: 1260063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of simple sucrose and percoll based methodologies for synaptosome enrichment.
    Tenreiro P; Rebelo S; Martins F; Santos M; Coelho ED; Almeida M; Alves de Matos AP; da Cruz E Silva OA
    Anal Biochem; 2017 Jan; 517():1-8. PubMed ID: 27771393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular fractionation of striatum: sedimentation properties of dopaminergic synaptosomes.
    Van der Krogt JA; Koot-Gronsveld E; Van den Berg CJ
    Life Sci; 1983 Aug; 33(7):605-13. PubMed ID: 6135970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional control of phospholipase A2 activity by Ca2+/calmodulin-dependent protein kinase II, cAMP-dependent protein kinase, and casein kinase II.
    Piomelli D; Greengard P
    Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6770-4. PubMed ID: 1650481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale preparation of synaptosomes from bovine brain using a zonal rotor technique.
    Leskawa KC; Yohe HC; Matsumoto M; Rosenberg A
    Neurochem Res; 1979 Aug; 4(4):483-504. PubMed ID: 158141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The subcellular distribution of a membrane-bound calmodulin-stimulated protein kinase.
    Rostas JA; Brent VA; Heath JW; Neame RL; Powis DA; Weinberger RP; Dunkley PR
    Neurochem Res; 1986 Feb; 11(2):253-68. PubMed ID: 3703104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of zonal centrifugation method for the preparation of mu-opioid receptor enriched membranes from bovine corpus striatum.
    Sastry KV; Harikumar KG; Sailaja P; Janardana Sarma MK
    J Neurosci Methods; 1997 Jun; 74(1):45-52. PubMed ID: 9210574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular fractionation on Percoll gradient of mossy fiber synaptosomes: evoked release of glutamate, GABA, aspartate and glutamate decarboxylase activity in control and degranulated rat hippocampus.
    Taupin P; Ben-Ari Y; Roisin MP
    Brain Res; 1994 May; 644(2):313-21. PubMed ID: 7914149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glial plasmalemmal vesicles: a subcellular fraction from rat hippocampal homogenate distinct from synaptosomes.
    Nakamura Y; Iga K; Shibata T; Shudo M; Kataoka K
    Glia; 1993 Sep; 9(1):48-56. PubMed ID: 7902337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.