These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29132122)

  • 1. Modelling the long-term effect of wastewater compositions on maximum sulfide and methane production rates of sewer biofilm.
    Sun J; Ni BJ; Sharma KR; Wang Q; Hu S; Yuan Z
    Water Res; 2018 Feb; 129():58-65. PubMed ID: 29132122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfide and methane production in sewer sediments.
    Liu Y; Ni BJ; Ganigué R; Werner U; Sharma KR; Yuan Z
    Water Res; 2015 Mar; 70():350-9. PubMed ID: 25543244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of nitrate dosing on methanogenic activity in a sulfide-producing sewer biofilm reactor.
    Jiang G; Sharma KR; Yuan Z
    Water Res; 2013 Apr; 47(5):1783-92. PubMed ID: 23352490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control sulfide and methane production in sewers based on free ammonia inactivation.
    Zuo Z; Song Y; Ren D; Li H; Gao Y; Yuan Z; Huang X; Zheng M; Liu Y
    Environ Int; 2020 Oct; 143():105928. PubMed ID: 32673907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the pH effect on sulfidogenesis in anaerobic sewer biofilm.
    Sharma K; Derlon N; Hu S; Yuan Z
    Water Res; 2014 Feb; 49():175-85. PubMed ID: 24326022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-based succession existed in rural sewer biofilms: Bacterial communities, sulfate-reducing bacteria and methanogenic archaea, and sulfide and methane generation.
    Zheng T; Li W; Ma Y; Liu J
    Sci Total Environ; 2021 Apr; 765():144397. PubMed ID: 33385817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversion of food waste into the sulfate-laden sewer: Interaction and electron flow of sulfidogenesis and methanogenesis.
    Zan F; Tang W; Jiang F; Chen G
    Water Res; 2021 Sep; 202():117437. PubMed ID: 34298275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of reduced water consumption on sulfide and methane production in rising main sewers.
    Sun J; Hu S; Sharma KR; Bustamante H; Yuan Z
    J Environ Manage; 2015 May; 154():307-15. PubMed ID: 25748598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment.
    Liu Y; Sharma KR; Ni BJ; Fan L; Murthy S; Tyson GQ; Yuan Z
    Water Res; 2015 May; 74():155-65. PubMed ID: 25727155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A laboratory assessment of the impact of brewery wastewater discharge on sulfide and methane production in a sewer.
    Sudarjanto G; Sharma KR; Gutierrez O; Yuan Z
    Water Sci Technol; 2011; 64(8):1614-9. PubMed ID: 22335103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfide and methane production in sewer sediments: Field survey and model evaluation.
    Liu Y; Tugtas AE; Sharma KR; Ni BJ; Yuan Z
    Water Res; 2016 Feb; 89():142-50. PubMed ID: 26650449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrite effectively inhibits sulfide and methane production in a laboratory scale sewer reactor.
    Mohanakrishnan J; Gutierrez O; Meyer RL; Yuan Z
    Water Res; 2008 Aug; 42(14):3961-71. PubMed ID: 18675440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems.
    Gutierrez O; Sudarjanto G; Ren G; Ganigué R; Jiang G; Yuan Z
    Water Res; 2014 Jan; 48():569-78. PubMed ID: 24210545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and modelling evaluations of sulfide formation in a mega-sized deep tunnel sewer system and implications for sewer management.
    Liang ZS; Sun J; Chau HK; Leong EI; Wu D; Chen GH; Jiang F
    Environ Int; 2019 Oct; 131():105011. PubMed ID: 31374444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.
    Sun J; Pikaar I; Sharma KR; Keller J; Yuan Z
    Water Res; 2015 Mar; 71():150-9. PubMed ID: 25616115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic evaluation of a dynamic sewer process model for prediction of odor formation and mitigation in large-scale pressurized sewers in Hong Kong.
    Liang ZS; Zhang L; Wu D; Chen GH; Jiang F
    Water Res; 2019 May; 154():94-103. PubMed ID: 30776618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing.
    Zhang L; Keller J; Yuan Z
    Water Res; 2009 Sep; 43(17):4123-32. PubMed ID: 19576610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Test of transformation mechanism of food waste and its impacts on sulfide and methane production in the sewer system.
    Zan F; Dai J; Jiang F; Chan RC; Chen G
    Water Sci Technol; 2020 Feb; 81(4):845-852. PubMed ID: 32460287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of nitrate addition on biofilm properties and activities in rising main sewers.
    Mohanakrishnan J; Gutierrez O; Sharma KR; Guisasola A; Werner U; Meyer RL; Keller J; Yuan Z
    Water Res; 2009 Sep; 43(17):4225-37. PubMed ID: 19577270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in Microbial Biofilm Communities during Colonization of Sewer Systems.
    Auguet O; Pijuan M; Batista J; Borrego CM; Gutierrez O
    Appl Environ Microbiol; 2015 Oct; 81(20):7271-80. PubMed ID: 26253681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.