These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29132123)

  • 41. Using acidic-modified bentonite for anaerobically digested sludge conditioning and dewatering.
    Masihi H; Badalians Gholikandi G
    Chemosphere; 2020 Feb; 241():125096. PubMed ID: 31629242
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electro-dewatering of sludge under pressure and non-pressure conditions.
    Tuan PA; Jurate V; Mika S
    Environ Technol; 2008 Oct; 29(10):1075-84. PubMed ID: 18942575
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Migration of ions and organic matter during electro-dewatering of anaerobic sludge.
    Tuan PA; Sillanpää M
    J Hazard Mater; 2010 Jan; 173(1-3):54-61. PubMed ID: 19735981
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced sludge conditioning by enzyme pre-treatment: comparison of laboratory and pilot scale dewatering results.
    Dursun D; Turkmen M; Abu-Orf M; Dentel SK
    Water Sci Technol; 2006; 54(5):33-41. PubMed ID: 17087367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Study on dewatering of activated sludge under applied electric field].
    Ji XY; Wang YL; Feng J
    Huan Jing Ke Xue; 2012 Dec; 33(12):4393-9. PubMed ID: 23379170
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of salt, pH and polyelectrolyte on the pressure electro-dewatering of sewage sludge.
    Citeau M; Larue O; Vorobiev E
    Water Res; 2011 Mar; 45(6):2167-80. PubMed ID: 21334041
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of alternating electric field on deep dewatering of municipal sludge and changes of extracellular polymeric substance during dewatering.
    Li Y; Liu L; Li X; Xie J; Guan M; Wang E; Lu D; Dong T; Zhang X
    Sci Total Environ; 2022 Oct; 842():156839. PubMed ID: 35732236
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Soluble metal ions migration and distribution in sludge electro-dewatering.
    Lv H; Xing S; Liu D; Wang F; Zhang W; Sun G; Wu X
    Environ Res; 2020 Jan; 180():108862. PubMed ID: 31706597
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid and efficient activated sludge treatment by electro-Fenton oxidation.
    Chen Y; Chen H; Li J; Xiao L
    Water Res; 2019 Apr; 152():181-190. PubMed ID: 30669040
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unraveling the catalyzing behaviors of different iron species (Fe
    Zhen G; Lu X; Su L; Kobayashi T; Kumar G; Zhou T; Xu K; Li YY; Zhu X; Zhao Y
    Water Res; 2018 May; 134():101-114. PubMed ID: 29407644
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pilot-scale study for phosphorus recovery by sludge acidification and dewatering.
    Quist-Jensen CA; Wybrandt L; Løkkegaard H; Antonsen SB; Christensen ML
    Environ Technol; 2020 Sep; 41(22):2928-2934. PubMed ID: 30806590
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Response of extracellular polymeric substances to thermal treatment in sludge dewatering process.
    Wang LF; Qian C; Jiang JK; Ye XD; Yu HQ
    Environ Pollut; 2017 Dec; 231(Pt 2):1388-1392. PubMed ID: 28911794
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cross-country analysis of faecal sludge dewatering.
    Gold M; Harada H; Therrien JD; Nishida T; Cunningham M; Semiyaga S; Fujii S; Dorea C; Nguyen VA; Strande L
    Environ Technol; 2018 Dec; 39(23):3077-3087. PubMed ID: 28866955
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamic changes of microbial community and moisture ratio during bio-drying of sludge after electro-dewatering.
    Li Q; Zhang K; Yang Z; Guo H; Zheng X; Zhang Q; Xiong J; Lu X
    J Environ Manage; 2022 Dec; 324():116366. PubMed ID: 36183534
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coupling sludge-based biochar and electrolysis for conditioning and dewatering of sewage sludge: Effect of char properties.
    Yu H; Zhang D; Gu L; Wen H; Zhu N
    Environ Res; 2022 Nov; 214(Pt 3):113974. PubMed ID: 35952734
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improved sludge dewaterability by tannic acid conditioning: Temperature, thermodynamics and mechanism studies.
    Ge D; Yuan H; Shen Y; Zhang W; Zhu N
    Chemosphere; 2019 Sep; 230():14-23. PubMed ID: 31102867
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparatively optimization of dosages of oxidation agents based on volatile solids and dry solids content in dewatering of sewage sludge.
    Yu W; Yang J; Tao S; Shi Y; Yu J; Lv Y; Liang S; Xiao K; Liu B; Hou H; Hu J; Wu X
    Water Res; 2017 Dec; 126():342-350. PubMed ID: 28972938
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations.
    Wu B; Dai X; Chai X
    Water Res; 2020 Aug; 180():115912. PubMed ID: 32422413
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Co-conditioning of the anaerobic digested sludge of a municipal wastewater treatment plant with alum sludge: benefit of phosphorus reduction in reject water.
    Yang Y; Zhao YQ; Babatunde AO; Kearney P
    Water Environ Res; 2007 Dec; 79(13):2468-76. PubMed ID: 18198692
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantification of wastewater sludge dewatering.
    Skinner SJ; Studer LJ; Dixon DR; Hillis P; Rees CA; Wall RC; Cavalida RG; Usher SP; Stickland AD; Scales PJ
    Water Res; 2015 Oct; 82():2-13. PubMed ID: 26003332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.