BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 29132215)

  • 1. In Vivo Molecular Electron Paramagnetic Resonance-Based Spectroscopy and Imaging of Tumor Microenvironment and Redox Using Functional Paramagnetic Probes.
    Khramtsov VV
    Antioxid Redox Signal; 2018 May; 28(15):1365-1377. PubMed ID: 29132215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo EPR Assessment of pH, pO2, Redox Status, and Concentrations of Phosphate and Glutathione in the Tumor Microenvironment.
    Bobko AA; Eubank TD; Driesschaert B; Khramtsov VV
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29608148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Electron Paramagnetic Resonance: Radical Concepts for Translation to the Clinical Setting.
    Khramtsov VV
    Antioxid Redox Signal; 2018 May; 28(15):1341-1344. PubMed ID: 29304554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Electron Paramagnetic Resonance Molecular Profiling of Tumor Microenvironment upon Tumor Progression to Malignancy in an Animal Model of Breast Cancer.
    Eubank TD; Bobko AA; Hoblitzell EH; Gencheva M; Driesschaert B; Khramtsov VV
    Mol Imaging Biol; 2023 Aug; ():. PubMed ID: 37610610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interstitial Inorganic Phosphate as a Tumor Microenvironment Marker for Tumor Progression.
    Bobko AA; Eubank TD; Driesschaert B; Dhimitruka I; Evans J; Mohammad R; Tchekneva EE; Dikov MM; Khramtsov VV
    Sci Rep; 2017 Jan; 7():41233. PubMed ID: 28117423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Measurement and Imaging of Redox Status with Electron Paramagnetic Resonance.
    Epel B; Kao JPY; Eaton SS; Eaton GR; Halpern HJ
    Antioxid Redox Signal; 2024 May; 40(13-15):850-862. PubMed ID: 36680741
    [No Abstract]   [Full Text] [Related]  

  • 7. Trityl Quinodimethane Derivatives as Unimolecular Triple-Function Extracellular EPR Probes for Redox, pH, and Oxygen.
    Feng Y; Tan X; Shi Z; Villamena FA; Zweier JL; Song Y; Liu Y
    Anal Chem; 2023 Jan; 95(2):1057-1064. PubMed ID: 36602544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatible Monophosphonated Trityl Spin Probe, HOPE71, for In Vivo Measurement of pO
    Gluth TD; Poncelet M; Gencheva M; Hoblitzell EH; Khramtsov VV; Eubank TD; Driesschaert B
    Anal Chem; 2023 Jan; 95(2):946-954. PubMed ID: 36537829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsed Electron Paramagnetic Resonance Imaging: Applications in the Studies of Tumor Physiology.
    Kishimoto S; Matsumoto KI; Saito K; Enomoto A; Matsumoto S; Mitchell JB; Devasahayam N; Krishna MC
    Antioxid Redox Signal; 2018 May; 28(15):1378-1393. PubMed ID: 29130334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional electron paramagnetic resonance imaging of ischemic rat heart: Monitoring of tissue oxygenation and pH.
    Gorodetsky AA; Kirilyuk IA; Khramtsov VV; Komarov DA
    Magn Reson Med; 2016 Jul; 76(1):350-8. PubMed ID: 26301868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels.
    Kuppusamy P; Li H; Ilangovan G; Cardounel AJ; Zweier JL; Yamada K; Krishna MC; Mitchell JB
    Cancer Res; 2002 Jan; 62(1):307-12. PubMed ID: 11782393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concurrent Longitudinal EPR Monitoring of Tissue Oxygenation, Acidosis, and Reducing Capacity in Mouse Xenograft Tumor Models.
    Bobko AA; Evans J; Denko NC; Khramtsov VV
    Cell Biochem Biophys; 2017 Jun; 75(2):247-253. PubMed ID: 27193607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro simultaneous mapping of the partial pressure of oxygen, pH and inorganic phosphate using electron paramagnetic resonance.
    Taguchi A; DeVience S; Driesschaert B; Khramtsov VV; Hirata H
    Analyst; 2020 May; 145(9):3236-3244. PubMed ID: 32134072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Janus-faced tumor microenvironment and redox.
    Khramtsov VV; Gillies RJ
    Antioxid Redox Signal; 2014 Aug; 21(5):723-9. PubMed ID: 24512276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes.
    Dikalov SI; Polienko YF; Kirilyuk I
    Antioxid Redox Signal; 2018 May; 28(15):1433-1443. PubMed ID: 29037084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier transform EPR spectroscopy of trityl radicals for multifunctional assessment of chemical microenvironment.
    Bobko AA; Dhimitruka I; Zweier JL; Khramtsov VV
    Angew Chem Int Ed Engl; 2014 Mar; 53(10):2735-8. PubMed ID: 24488710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Application of Proton-Electron Double-Resonance Imaging.
    Kishimoto S; Krishna MC; Khramtsov VV; Utsumi H; Lurie DJ
    Antioxid Redox Signal; 2018 May; 28(15):1345-1364. PubMed ID: 28990406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive imaging of the levels and effects of glutathione on the redox status of mouse brain using electron paramagnetic resonance imaging.
    Emoto MC; Matsuoka Y; Yamada KI; Sato-Akaba H; Fujii HG
    Biochem Biophys Res Commun; 2017 Apr; 485(4):802-806. PubMed ID: 28257840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo monitoring of pH, redox status, and glutathione using L-band EPR for assessment of therapeutic effectiveness in solid tumors.
    Bobko AA; Eubank TD; Voorhees JL; Efimova OV; Kirilyuk IA; Petryakov S; Trofimiov DG; Marsh CB; Zweier JL; Grigor'ev IA; Samouilov A; Khramtsov VV
    Magn Reson Med; 2012 Jun; 67(6):1827-36. PubMed ID: 22113626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo measurement of tumor redox environment using EPR spectroscopy.
    Ilangovan G; Li H; Zweier JL; Kuppusamy P
    Mol Cell Biochem; 2002; 234-235(1-2):393-8. PubMed ID: 12162459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.