These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29132292)

  • 1. fLPS: Fast discovery of compositional biases for the protein universe.
    Harrison PM
    BMC Bioinformatics; 2017 Nov; 18(1):476. PubMed ID: 29132292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. fLPS 2.0: rapid annotation of compositionally-biased regions in biological sequences.
    Harrison PM
    PeerJ; 2021; 9():e12363. PubMed ID: 34760378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LPS-annotate: complete annotation of compositionally biased regions in the protein knowledgebase.
    Harbi D; Kumar M; Harrison PM
    Database (Oxford); 2011; 2011():baq031. PubMed ID: 21216786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exhaustive assignment of compositional bias reveals universally prevalent biased regions: analysis of functional associations in human and Drosophila.
    Harrison PM
    BMC Bioinformatics; 2006 Oct; 7():441. PubMed ID: 17032452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compositionally Biased Dark Matter in the Protein Universe.
    Harrison PM
    Proteomics; 2018 Nov; 18(21-22):e1800069. PubMed ID: 30260558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes.
    Harrison PM; Gerstein M
    Genome Biol; 2003; 4(6):R40. PubMed ID: 12801414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing strategy for the discovery of compositionally-biased or low-complexity regions in proteins.
    Harrison PM
    Sci Rep; 2024 Jan; 14(1):680. PubMed ID: 38182699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bioinformatics method for identifying Q/N-rich prion-like domains in proteins.
    Ross ED; Maclea KS; Anderson C; Ben-Hur A
    Methods Mol Biol; 2013; 1017():219-28. PubMed ID: 23719919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ProBias: a web-server for the identification of user-specified types of compositionally biased segments in protein sequences.
    Kuznetsov IB
    Bioinformatics; 2008 Jul; 24(13):1534-5. PubMed ID: 18480099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel algorithm for identifying low-complexity regions in a protein sequence.
    Li X; Kahveci T
    Bioinformatics; 2006 Dec; 22(24):2980-7. PubMed ID: 17018537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomics reveals long, evolutionarily conserved, low-complexity islands in yeast proteins.
    Romov PA; Li F; Lipke PN; Epstein SL; Qiu WG
    J Mol Evol; 2006 Sep; 63(3):415-25. PubMed ID: 16927006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsically Disordered Compositional Bias in Proteins: Sequence Traits, Region Clustering, and Generation of Hypothetical Functional Associations.
    Harrison PM
    Bioinform Biol Insights; 2024; 18():11779322241287485. PubMed ID: 39417089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the relationship between compositional sequence complexity and periodicity.
    Bolshoy A
    Comput Biol Chem; 2008 Feb; 32(1):17-28. PubMed ID: 17983838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BiasViz: visualization of amino acid biased regions in protein alignments.
    Huska MR; Buschmann H; Andrade-Navarro MA
    Bioinformatics; 2007 Nov; 23(22):3093-4. PubMed ID: 17921493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MMseqs software suite for fast and deep clustering and searching of large protein sequence sets.
    Hauser M; Steinegger M; Söding J
    Bioinformatics; 2016 May; 32(9):1323-30. PubMed ID: 26743509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel sensitive method for the detection of user-defined compositional bias in biological sequences.
    Kuznetsov IB; Hwang S
    Bioinformatics; 2006 May; 22(9):1055-63. PubMed ID: 16500936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variable absorption of mutational trends by prion-forming domains during
    Harrison PM
    PeerJ; 2020; 8():e9669. PubMed ID: 32844065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores.
    Zambrano R; Conchillo-Sole O; Iglesias V; Illa R; Rousseau F; Schymkowitz J; Sabate R; Daura X; Ventura S
    Nucleic Acids Res; 2015 Jul; 43(W1):W331-7. PubMed ID: 25977297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the prion propensity of glutamine/asparagine-rich proteins.
    Paul KR; Ross ED
    Prion; 2015; 9(5):347-54. PubMed ID: 26555096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the low complexity of protein sequences via the low complexity triangle.
    Mier P; Andrade-Navarro MA
    PLoS One; 2020; 15(12):e0239154. PubMed ID: 33378336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.