BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29132433)

  • 1. Impaired Ciliogenesis in differentiating human bronchial epithelia exposed to non-Cytotoxic doses of multi-walled carbon Nanotubes.
    Snyder RJ; Hussain S; Tucker CJ; Randell SH; Garantziotis S
    Part Fibre Toxicol; 2017 Nov; 14(1):44. PubMed ID: 29132433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute effects of multi-walled carbon nanotubes on primary bronchial epithelial cells from COPD patients.
    Beyeler S; Chortarea S; Rothen-Rutishauser B; Petri-Fink A; Wick P; Tschanz SA; von Garnier C; Blank F
    Nanotoxicology; 2018 Sep; 12(7):699-711. PubMed ID: 29804489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-walled carbon nanotubes directly induce epithelial-mesenchymal transition in human bronchial epithelial cells via the TGF-β-mediated Akt/GSK-3β/SNAIL-1 signalling pathway.
    Polimeni M; Gulino GR; Gazzano E; Kopecka J; Marucco A; Fenoglio I; Cesano F; Campagnolo L; Magrini A; Pietroiusti A; Ghigo D; Aldieri E
    Part Fibre Toxicol; 2016 Jun; 13(1):27. PubMed ID: 27251132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-walled carbon nanotubes upregulate mitochondrial gene expression and trigger mitochondrial dysfunction in primary human bronchial epithelial cells.
    Snyder RJ; Verhein KC; Vellers HL; Burkholder AB; Garantziotis S; Kleeberger SR
    Nanotoxicology; 2019 Dec; 13(10):1344-1361. PubMed ID: 31478767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells.
    Mihalchik AL; Ding W; Porter DW; McLoughlin C; Schwegler-Berry D; Sisler JD; Stefaniak AB; Snyder-Talkington BN; Cruz-Silva R; Terrones M; Tsuruoka S; Endo M; Castranova V; Qian Y
    Toxicology; 2015 Jul; 333():25-36. PubMed ID: 25797581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Asthmatic Bronchial Cells Are More Susceptible to Subchronic Repeated Exposures of Aerosolized Carbon Nanotubes At Occupationally Relevant Doses Than Healthy Cells.
    Chortarea S; Barosova H; Clift MJD; Wick P; Petri-Fink A; Rothen-Rutishauser B
    ACS Nano; 2017 Aug; 11(8):7615-7625. PubMed ID: 28505409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiwalled carbon nanotubes induce altered morphology and loss of barrier function in human bronchial epithelium at noncytotoxic doses.
    Snyder RJ; Hussain S; Rice AB; Garantziotis S
    Int J Nanomedicine; 2014; 9():4093-105. PubMed ID: 25187712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Culture medium type affects endocytosis of multi-walled carbon nanotubes in BEAS-2B cells and subsequent biological response.
    Haniu H; Saito N; Matsuda Y; Tsukahara T; Maruyama K; Usui Y; Aoki K; Takanashi S; Kobayashi S; Nomura H; Okamoto M; Shimizu M; Kato H
    Toxicol In Vitro; 2013 Sep; 27(6):1679-85. PubMed ID: 23648666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells.
    Hirano S; Fujitani Y; Furuyama A; Kanno S
    Toxicol Appl Pharmacol; 2010 Nov; 249(1):8-15. PubMed ID: 20800606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo genotoxic effects of straight versus tangled multi-walled carbon nanotubes.
    Catalán J; Siivola KM; Nymark P; Lindberg H; Suhonen S; Järventaus H; Koivisto AJ; Moreno C; Vanhala E; Wolff H; Kling KI; Jensen KA; Savolainen K; Norppa H
    Nanotoxicology; 2016 Aug; 10(6):794-806. PubMed ID: 26674712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of multi-wall carbon nanotube and nitrogen-doped multi-wall carbon nanotube effects on lung function and airway reactivity in rats.
    Russ KA; Thompson JA; Kashon M; Porter DW; Friend SA; McKinney W; Fedan JS
    Toxicol Appl Pharmacol; 2019 Feb; 364():153-163. PubMed ID: 30423287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface.
    Polk WW; Sharma M; Sayes CM; Hotchkiss JA; Clippinger AJ
    Part Fibre Toxicol; 2016 Apr; 13():20. PubMed ID: 27108236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells.
    Siegrist KJ; Reynolds SH; Porter DW; Mercer RR; Bauer AK; Lowry D; Cena L; Stueckle TA; Kashon ML; Wiley J; Salisbury JL; Mastovich J; Bunker K; Sparrow M; Lupoi JS; Stefaniak AB; Keane MJ; Tsuruoka S; Terrones M; McCawley M; Sargent LM
    Part Fibre Toxicol; 2019 Oct; 16(1):36. PubMed ID: 31590690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ciliogenesis in human bronchial epithelial cells cultured at the air-liquid interface.
    de Jong PM; van Sterkenburg MA; Hesseling SC; Kempenaar JA; Mulder AA; Mommaas AM; Dijkman JH; Ponec M
    Am J Respir Cell Mol Biol; 1994 Mar; 10(3):271-7. PubMed ID: 8117445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro.
    Lindberg HK; Falck GC; Singh R; Suhonen S; Järventaus H; Vanhala E; Catalán J; Farmer PB; Savolainen KM; Norppa H
    Toxicology; 2013 Nov; 313(1):24-37. PubMed ID: 23266321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-walled carbon nanotube induces nitrative DNA damage in human lung epithelial cells via HMGB1-RAGE interaction and Toll-like receptor 9 activation.
    Hiraku Y; Guo F; Ma N; Yamada T; Wang S; Kawanishi S; Murata M
    Part Fibre Toxicol; 2016 Mar; 13():16. PubMed ID: 27026438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeated exposure to carbon nanotube-based aerosols does not affect the functional properties of a 3D human epithelial airway model.
    Chortarea S; Clift MJ; Vanhecke D; Endes C; Wick P; Petri-Fink A; Rothen-Rutishauser B
    Nanotoxicology; 2015; 9(8):983-93. PubMed ID: 25697181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leveraging proteomics to compare submerged versus air-liquid interface carbon nanotube exposure to a 3D lung cell model.
    Hilton G; Barosova H; Petri-Fink A; Rothen-Rutishauser B; Bereman M
    Toxicol In Vitro; 2019 Feb; 54():58-66. PubMed ID: 30243732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in MWCNT- and SWCNT-induced DNA methylation alterations in association with the nuclear deposition.
    Öner D; Ghosh M; Bové H; Moisse M; Boeckx B; Duca RC; Poels K; Luyts K; Putzeys E; Van Landuydt K; Vanoirbeek JA; Ameloot M; Lambrechts D; Godderis L; Hoet PH
    Part Fibre Toxicol; 2018 Feb; 15(1):11. PubMed ID: 29426343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional variations in human bronchial epithelial cells cultured in air-liquid interface using different growth media.
    Leung C; Wadsworth SJ; Yang SJ; Dorscheid DR
    Am J Physiol Lung Cell Mol Physiol; 2020 May; 318(5):L1063-L1073. PubMed ID: 32208929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.