These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 29132641)

  • 1. Force Spectroscopy with 9-μs Resolution and Sub-pN Stability by Tailoring AFM Cantilever Geometry.
    Edwards DT; Faulk JK; LeBlanc MA; Perkins TT
    Biophys J; 2017 Dec; 113(12):2595-2600. PubMed ID: 29132641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing force spectroscopy by modifying commercial cantilevers: Improved stability, precision, and temporal resolution.
    Edwards DT; Perkins TT
    J Struct Biol; 2017 Jan; 197(1):13-25. PubMed ID: 26804584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Force Spectroscopy Using Focused-Ion-Beam-Modified Cantilevers.
    Faulk JK; Edwards DT; Bull MS; Perkins TT
    Methods Enzymol; 2017; 582():321-351. PubMed ID: 28062041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.
    Edwards DT; Faulk JK; Sanders AW; Bull MS; Walder R; LeBlanc MA; Sousa MC; Perkins TT
    Nano Lett; 2015 Oct; 15(10):7091-8. PubMed ID: 26421945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved single molecule force spectroscopy using micromachined cantilevers.
    Bull MS; Sullan RM; Li H; Perkins TT
    ACS Nano; 2014 May; 8(5):4984-95. PubMed ID: 24670198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscopy with sub-picoNewton force stability for biological applications.
    Sullan RM; Churnside AB; Nguyen DM; Bull MS; Perkins TT
    Methods; 2013 Apr; 60(2):131-41. PubMed ID: 23562681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Precision Single-Molecule Characterization of the Folding of an HIV RNA Hairpin by Atomic Force Microscopy.
    Walder R; Van Patten WJ; Ritchie DB; Montange RK; Miller TW; Woodside MT; Perkins TT
    Nano Lett; 2018 Oct; 18(10):6318-6325. PubMed ID: 30234311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Routine and timely sub-picoNewton force stability and precision for biological applications of atomic force microscopy.
    Churnside AB; Sullan RM; Nguyen DM; Case SO; Bull MS; King GM; Perkins TT
    Nano Lett; 2012 Jul; 12(7):3557-61. PubMed ID: 22694769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastable atomic force microscopy: improved force and positional stability.
    Churnside AB; Perkins TT
    FEBS Lett; 2014 Oct; 588(19):3621-30. PubMed ID: 24801176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy.
    Walder R; Van Patten WJ; Adhikari A; Perkins TT
    ACS Nano; 2018 Jan; 12(1):198-207. PubMed ID: 29244486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of a protein-folding landscape revealed by AFM-based force spectroscopy notwithstanding instrumental limitations.
    Edwards DT; LeBlanc MA; Perkins TT
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33723041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Resolution AFM-Based Force Spectroscopy.
    Sigdel KP; Pittman AE; Matin TR; King GM
    Methods Mol Biol; 2018; 1814():49-62. PubMed ID: 29956226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanically unfolding protein L using a laser-feedback-controlled cantilever.
    Crampton N; Alzahrani K; Beddard GS; Connell SD; Brockwell DJ
    Biophys J; 2011 Apr; 100(7):1800-9. PubMed ID: 21463594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Characterization of a Mechanically Labile α-Helical Protein Enabled by Efficient Site-Specific Bioconjugation.
    Walder R; LeBlanc MA; Van Patten WJ; Edwards DT; Greenberg JA; Adhikari A; Okoniewski SR; Sullan RMA; Rabuka D; Sousa MC; Perkins TT
    J Am Chem Soc; 2017 Jul; 139(29):9867-9875. PubMed ID: 28677396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Poisson's ratio variation on lateral spring constant of atomic force microscopy cantilevers.
    Yeh MK; Tai NH; Chen BY
    Ultramicroscopy; 2008 Sep; 108(10):1025-9. PubMed ID: 18547729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional cantilevers for simultaneous enhancement of contact resonance and harmonic atomic force microscopy.
    Wang W; Zhang K; Zhang W; Hou Y; Chen Y
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33784663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Observation of the Reversible Two-State Unfolding and Refolding of an α/β Protein by Single-Molecule Atomic Force Microscopy.
    He C; Hu C; Hu X; Hu X; Xiao A; Perkins TT; Li H
    Angew Chem Int Ed Engl; 2015 Aug; 54(34):9921-5. PubMed ID: 26136291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule protein unfolding and refolding using atomic force microscopy.
    Bornschlögl T; Rief M
    Methods Mol Biol; 2011; 783():233-50. PubMed ID: 21909892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of the damping on an AFM cantilever in fluid by the use of micropillars.
    Kawakami M; Taniguchi Y; Hiratsuka Y; Shimoike M; Smith DA
    Langmuir; 2010 Jan; 26(2):1002-7. PubMed ID: 19785459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.