BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 29133134)

  • 1. Sensing the Breaks: Cytosolic Chromatin in Senescence and Cancer.
    Di Micco R
    Trends Mol Med; 2017 Dec; 23(12):1067-1070. PubMed ID: 29133134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence.
    Glück S; Guey B; Gulen MF; Wolter K; Kang TW; Schmacke NA; Bridgeman A; Rehwinkel J; Zender L; Ablasser A
    Nat Cell Biol; 2017 Sep; 19(9):1061-1070. PubMed ID: 28759028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype.
    Malaquin N; Martinez A; Rodier F
    Exp Gerontol; 2016 Sep; 82():39-49. PubMed ID: 27235851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of the onset of the senescence associated secretory phenotype after DNA damage induced senescence.
    Meyer P; Maity P; Burkovski A; Schwab J; Müssel C; Singh K; Ferreira FF; Krug L; Maier HJ; Wlaschek M; Wirth T; Kestler HA; Scharffetter-Kochanek K
    PLoS Comput Biol; 2017 Dec; 13(12):e1005741. PubMed ID: 29206223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-canonical ATM/MRN activities temporally define the senescence secretory program.
    Malaquin N; Olivier MA; Martinez A; Nadeau S; Sawchyn C; Coppé JP; Cardin G; Mallette FA; Campisi J; Rodier F
    EMBO Rep; 2020 Oct; 21(10):e50718. PubMed ID: 32785991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cGAS is essential for cellular senescence.
    Yang H; Wang H; Ren J; Chen Q; Chen ZJ
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):E4612-E4620. PubMed ID: 28533362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression.
    Pazolli E; Alspach E; Milczarek A; Prior J; Piwnica-Worms D; Stewart SA
    Cancer Res; 2012 May; 72(9):2251-61. PubMed ID: 22422937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA sensing in senescence.
    Ruiz de Galarreta M; Lujambio A
    Nat Cell Biol; 2017 Aug; 19(9):1008-1009. PubMed ID: 28855731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autolysosomal degradation of cytosolic chromatin fragments antagonizes oxidative stress-induced senescence.
    Han X; Chen H; Gong H; Tang X; Huang N; Xu W; Tai H; Zhang G; Zhao T; Gong C; Wang S; Yang Y; Xiao H
    J Biol Chem; 2020 Apr; 295(14):4451-4463. PubMed ID: 32047109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular senescence and senescence-associated secretory phenotype via the cGAS-STING signaling pathway in cancer.
    Loo TM; Miyata K; Tanaka Y; Takahashi A
    Cancer Sci; 2020 Feb; 111(2):304-311. PubMed ID: 31799772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence.
    Vizioli MG; Liu T; Miller KN; Robertson NA; Gilroy K; Lagnado AB; Perez-Garcia A; Kiourtis C; Dasgupta N; Lei X; Kruger PJ; Nixon C; Clark W; Jurk D; Bird TG; Passos JF; Berger SL; Dou Z; Adams PD
    Genes Dev; 2020 Mar; 34(5-6):428-445. PubMed ID: 32001510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dysfunctional telomeres trigger cellular senescence mediated by cyclic GMP-AMP synthase.
    Abdisalaam S; Bhattacharya S; Mukherjee S; Sinha D; Srinivasan K; Zhu M; Akbay EA; Sadek HA; Shay JW; Asaithamby A
    J Biol Chem; 2020 Aug; 295(32):11144-11160. PubMed ID: 32540968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and Temporal Control of Senescence.
    Ito Y; Hoare M; Narita M
    Trends Cell Biol; 2017 Nov; 27(11):820-832. PubMed ID: 28822679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topoisomerase 1 cleavage complex enables pattern recognition and inflammation during senescence.
    Zhao B; Liu P; Fukumoto T; Nacarelli T; Fatkhutdinov N; Wu S; Lin J; Aird KM; Tang HY; Liu Q; Speicher DW; Zhang R
    Nat Commun; 2020 Feb; 11(1):908. PubMed ID: 32075966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin basis of the senescence-associated secretory phenotype.
    Hao X; Wang C; Zhang R
    Trends Cell Biol; 2022 Jun; 32(6):513-526. PubMed ID: 35012849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging roles of lncRNAs in senescence.
    Montes M; Lund AH
    FEBS J; 2016 Jul; 283(13):2414-26. PubMed ID: 26866709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-LET-Radiation-Induced Persistent DNA Damage Response Signaling and Gastrointestinal Cancer Development.
    Kumar K; Kumar S; Datta K; Fornace AJ; Suman S
    Curr Oncol; 2023 Jun; 30(6):5497-5514. PubMed ID: 37366899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration in the chromatin landscape during the DNA damage response: Continuous rotation of the gear driving cellular senescence and aging.
    Qian J; Zhou X; Tanaka K; Takahashi A
    DNA Repair (Amst); 2023 Nov; 131():103572. PubMed ID: 37742405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How autophagy both activates and inhibits cellular senescence.
    Kang C; Elledge SJ
    Autophagy; 2016 May; 12(5):898-9. PubMed ID: 27129029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone Variant H2A.J Marks Persistent DNA Damage and Triggers the Secretory Phenotype in Radiation-Induced Senescence.
    Isermann A; Mann C; Rübe CE
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33266246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.