BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 29133349)

  • 1. Role of Calprotectin in Withholding Zinc and Copper from Candida albicans.
    Besold AN; Gilston BA; Radin JN; Ramsoomair C; Culbertson EM; Li CX; Cormack BP; Chazin WJ; Kehl-Fie TE; Culotta VC
    Infect Immun; 2018 Feb; 86(2):. PubMed ID: 29133349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biphasic zinc compartmentalisation in a human fungal pathogen.
    Crawford AC; Lehtovirta-Morley LE; Alamir O; Niemiec MJ; Alawfi B; Alsarraf M; Skrahina V; Costa ACBP; Anderson A; Yellagunda S; Ballou ER; Hube B; Urban CF; Wilson D
    PLoS Pathog; 2018 May; 14(5):e1007013. PubMed ID: 29727465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ceruloplasmin as a source of Cu for a fungal pathogen.
    Besold AN; Shanbhag V; Petris MJ; Culotta VC
    J Inorg Biochem; 2021 Jun; 219():111424. PubMed ID: 33765639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Human Innate Immune Protein Calprotectin Elicits a Multimetal Starvation Response in Pseudomonas aeruginosa.
    Nelson CE; Huang W; Zygiel EM; Nolan EM; Kane MA; Oglesby AG
    Microbiol Spectr; 2021 Oct; 9(2):e0051921. PubMed ID: 34549997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic and spectroscopic study of Cu(ii) and Zn(ii) complexes with the (148-156) peptide fragment of C4YJH2, a putative metal transporter of Candida albicans.
    Bellotti D; Tocchio C; Guerrini R; Rowińska-Żyrek M; Remelli M
    Metallomics; 2019 Dec; 11(12):1988-1998. PubMed ID: 31737884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase.
    Li CX; Gleason JE; Zhang SX; Bruno VM; Cormack BP; Culotta VC
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):E5336-42. PubMed ID: 26351691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanded role of the Cu-sensing transcription factor Mac1p in Candida albicans.
    Culbertson EM; Bruno VM; Cormack BP; Culotta VC
    Mol Microbiol; 2020 Dec; 114(6):1006-1018. PubMed ID: 32808698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of manganese in morphogenesis and pathogenesis of the opportunistic fungal pathogen Candida albicans.
    Wildeman AS; Patel NK; Cormack BP; Culotta VC
    PLoS Pathog; 2023 Jun; 19(6):e1011478. PubMed ID: 37363924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting the vulnerable active site of a copper-only superoxide dismutase to disrupt fungal pathogenesis.
    Robinett NG; Culbertson EM; Peterson RL; Sanchez H; Andes DR; Nett JE; Culotta VC
    J Biol Chem; 2019 Feb; 294(8):2700-2713. PubMed ID: 30593499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candida albicans scavenges host zinc via Pra1 during endothelial invasion.
    Citiulo F; Jacobsen ID; Miramón P; Schild L; Brunke S; Zipfel P; Brock M; Hube B; Wilson D
    PLoS Pathog; 2012; 8(6):e1002777. PubMed ID: 22761575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper-only superoxide dismutase enzymes and iron starvation stress in
    Schatzman SS; Peterson RL; Teka M; He B; Cabelli DE; Cormack BP; Culotta VC
    J Biol Chem; 2020 Jan; 295(2):570-583. PubMed ID: 31806705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase.
    Broxton CN; Culotta VC
    PLoS One; 2016; 11(12):e0168400. PubMed ID: 28033429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Candida albicans zincophore and zinc transporter interactions with Zn(ii) and Ni(ii).
    Łoboda D; Rowińska-Żyrek M
    Dalton Trans; 2018 Feb; 47(8):2646-2654. PubMed ID: 29405215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Iron Withholding by the Innate Immune Protein Human Calprotectin.
    Zygiel EM; Nolan EM
    Acc Chem Res; 2019 Aug; 52(8):2301-2308. PubMed ID: 31381301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candida albicans Sap6 amyloid regions function in cellular aggregation and zinc binding, and contribute to zinc acquisition.
    Kumar R; Breindel C; Saraswat D; Cullen PJ; Edgerton M
    Sci Rep; 2017 Jun; 7(1):2908. PubMed ID: 28588252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases.
    Peterson RL; Galaleldeen A; Villarreal J; Taylor AB; Cabelli DE; Hart PJ; Culotta VC
    J Biol Chem; 2016 Sep; 291(40):20911-20923. PubMed ID: 27535222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Candida albicans.
    Wilson D
    Trends Microbiol; 2019 Feb; 27(2):188-189. PubMed ID: 30551845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of the hypha-related protein Pra1 and zinc transporter Zrt1 with biofilm formation by the pathogenic yeast Candida albicans.
    Kurakado S; Arai R; Sugita T
    Microbiol Immunol; 2018 Jun; 62(6):405-410. PubMed ID: 29704397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Candida albicans SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutases required for pathogen defense.
    Gleason JE; Galaleldeen A; Peterson RL; Taylor AB; Holloway SP; Waninger-Saroni J; Cormack BP; Cabelli DE; Hart PJ; Culotta VC
    Proc Natl Acad Sci U S A; 2014 Apr; 111(16):5866-71. PubMed ID: 24711423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistance of zinc-supplemented Candida albicans cells to the growth inhibitory effect of calprotectin.
    Santhanagopalan V; Hahn BL; Sohnle PG
    J Infect Dis; 1995 May; 171(5):1289-94. PubMed ID: 7751705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.