These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29133387)

  • 1. Insights into functions of the H channel of cytochrome
    Sharma V; Jambrina PG; Kaukonen M; Rosta E; Rich PR
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):E10339-E10348. PubMed ID: 29133387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The H channel is not a proton transfer path in yeast cytochrome c oxidase.
    Malkamäki A; Meunier B; Reidelbach M; Rich PR; Sharma V
    Biochim Biophys Acta Bioenerg; 2019 Sep; 1860(9):717-723. PubMed ID: 31374214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomics and site-directed mutagenesis support the existence of only one input channel for protons in the C-family (cbb3 oxidase) of heme-copper oxygen reductases.
    Hemp J; Han H; Roh JH; Kaplan S; Martinez TJ; Gennis RB
    Biochemistry; 2007 Sep; 46(35):9963-72. PubMed ID: 17676874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative coupling and role of heme a in the proton pump of heme-copper oxidases.
    Papa S; Capitanio N; Villani G; Capitanio G; Bizzoca A; Palese LL; Carlino V; De Nitto E
    Biochimie; 1998 Oct; 80(10):821-36. PubMed ID: 9893941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protonation-State Dependence of Hydration and Interactions in the Two Proton-Conducting Channels of Cytochrome c Oxidase.
    Gorriz RF; Volkenandt S; Imhof P
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the K-channel and the active-site tyrosine in the catalytic mechanism of cytochrome c oxidase.
    Sharma V; Wikström M
    Biochim Biophys Acta; 2016 Aug; 1857(8):1111-1115. PubMed ID: 26898520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray structural analyses of azide-bound cytochrome
    Shimada A; Hatano K; Tadehara H; Yano N; Shinzawa-Itoh K; Yamashita E; Muramoto K; Tsukihara T; Yoshikawa S
    J Biol Chem; 2018 Sep; 293(38):14868-14879. PubMed ID: 30077971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavity hydration dynamics in cytochrome
    Son CY; Yethiraj A; Cui Q
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):E8830-E8836. PubMed ID: 28973914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory conservation of energy with dioxygen: cytochrome C oxidase.
    Yoshikawa S; Shimada A; Shinzawa-Itoh K
    Met Ions Life Sci; 2015; 15():89-130. PubMed ID: 25707467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water exit pathways and proton pumping mechanism in B-type cytochrome c oxidase from molecular dynamics simulations.
    Yang L; Skjevik ÅA; Han Du WG; Noodleman L; Walker RC; Götz AW
    Biochim Biophys Acta; 2016 Sep; 1857(9):1594-1606. PubMed ID: 27317965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the proton loading site in cytochrome c oxidase.
    Lu J; Gunner MR
    Proc Natl Acad Sci U S A; 2014 Aug; 111(34):12414-9. PubMed ID: 25114210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The protonation state of a heme propionate controls electron transfer in cytochrome c oxidase.
    Brändén G; Brändén M; Schmidt B; Mills DA; Ferguson-Miller S; Brzezinski P
    Biochemistry; 2005 Aug; 44(31):10466-74. PubMed ID: 16060655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the essential proton-pumping kinetic gates and decoupling mutations in cytochrome
    Liang R; Swanson JMJ; Wikström M; Voth GA
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5924-5929. PubMed ID: 28536198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Protonated Water Cluster as a Transient Proton-Loading Site in Cytochrome c Oxidase.
    Supekar S; Gamiz-Hernandez AP; Kaila VR
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11940-4. PubMed ID: 27539738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding the view of proton pumping in cytochrome c oxidase through computer simulation.
    Peng Y; Voth GA
    Biochim Biophys Acta; 2012 Apr; 1817(4):518-25. PubMed ID: 22178790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective pumping proton collection facilitated by a copper site (CuB) of bovine heart cytochrome c oxidase, revealed by a newly developed time-resolved infrared system.
    Kubo M; Nakashima S; Yamaguchi S; Ogura T; Mochizuki M; Kang J; Tateno M; Shinzawa-Itoh K; Kato K; Yoshikawa S
    J Biol Chem; 2013 Oct; 288(42):30259-30269. PubMed ID: 23996000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen-Bonded Network and Water Dynamics in the D-channel of Cytochrome c Oxidase.
    Ghane T; Gorriz RF; Wrzalek S; Volkenandt S; Dalatieh F; Reidelbach M; Imhof P
    J Membr Biol; 2018 Jun; 251(3):299-314. PubMed ID: 29435610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling between protonation and conformation in cytochrome c oxidase: Insights from constant-pH MD simulations.
    Oliveira AS; Campos SR; Baptista AM; Soares CM
    Biochim Biophys Acta; 2016 Jun; 1857(6):759-71. PubMed ID: 27033303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Mg2+-containing Water Cluster of Mammalian Cytochrome c Oxidase Collects Four Pumping Proton Equivalents in Each Catalytic Cycle.
    Yano N; Muramoto K; Shimada A; Takemura S; Baba J; Fujisawa H; Mochizuki M; Shinzawa-Itoh K; Yamashita E; Tsukihara T; Yoshikawa S
    J Biol Chem; 2016 Nov; 291(46):23882-23894. PubMed ID: 27605664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton transfer in the K-channel analog of B-type Cytochrome c oxidase from Thermus thermophilus.
    Woelke AL; Wagner A; Galstyan G; Meyer T; Knapp EW
    Biophys J; 2014 Nov; 107(9):2177-84. PubMed ID: 25418102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.