BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 29133589)

  • 1. Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics.
    Ding MQ; Chen L; Cooper GF; Young JD; Lu X
    Mol Cancer Res; 2018 Feb; 16(2):269-278. PubMed ID: 29133589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond the limitation of targeted therapy: Improve the application of targeted drugs combining genomic data with machine learning.
    Miao R; Chen HH; Dang Q; Xia LY; Yang ZY; He MF; Hao ZF; Liang Y
    Pharmacol Res; 2020 Sep; 159():104932. PubMed ID: 32473309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine.
    Zhu Z; Ihle NT; Rejto PA; Zarrinkar PP
    BMC Genomics; 2016 Jun; 17():455. PubMed ID: 27296290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative omics analyses broaden treatment targets in human cancer.
    Sengupta S; Sun SQ; Huang KL; Oh C; Bailey MH; Varghese R; Wyczalkowski MA; Ning J; Tripathi P; McMichael JF; Johnson KJ; Kandoth C; Welch J; Ma C; Wendl MC; Payne SH; Fenyö D; Townsend RR; Dipersio JF; Chen F; Ding L
    Genome Med; 2018 Jul; 10(1):60. PubMed ID: 30053901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PanDrugs: a novel method to prioritize anticancer drug treatments according to individual genomic data.
    Piñeiro-Yáñez E; Reboiro-Jato M; Gómez-López G; Perales-Patón J; Troulé K; Rodríguez JM; Tejero H; Shimamura T; López-Casas PP; Carretero J; Valencia A; Hidalgo M; Glez-Peña D; Al-Shahrour F
    Genome Med; 2018 May; 10(1):41. PubMed ID: 29848362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network-Based Matching of Patients and Targeted Therapies for Precision Oncology.
    Liu Q; Ha MJ; Bhattacharyya R; Garmire L; Baladandayuthapani V
    Pac Symp Biocomput; 2020; 25():623-634. PubMed ID: 31797633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal drug prediction from personal genomics profiles.
    Sheng J; Li F; Wong ST
    IEEE J Biomed Health Inform; 2015 Jul; 19(4):1264-70. PubMed ID: 25781964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance.
    Choi J; Park S; Ahn J
    Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Precision medicine: A major step forward in specific situations, a myth in refractory cancers?].
    Albin N; Mc Leer A; Sakhri L
    Bull Cancer; 2018 Apr; 105(4):375-396. PubMed ID: 29501208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GMIEC: a shiny application for the identification of gene-targeted drugs for precision medicine.
    Malagoli Tagliazucchi G; Taccioli C
    BMC Genomics; 2020 Sep; 21(1):619. PubMed ID: 32912170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer Precision Medicine: Why More Is More and DNA Is Not Enough.
    Schütte M; Ogilvie LA; Rieke DT; Lange BMH; Yaspo ML; Lehrach H
    Public Health Genomics; 2017; 20(2):70-80. PubMed ID: 28595192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experience with precision genomics and tumor board, indicates frequent target identification, but barriers to delivery.
    Bryce AH; Egan JB; Borad MJ; Stewart AK; Nowakowski GS; Chanan-Khan A; Patnaik MM; Ansell SM; Banck MS; Robinson SI; Mansfield AS; Klee EW; Oliver GR; McCormick JB; Huneke NE; Tagtow CM; Jenkins RB; Rumilla KM; Kerr SE; Kocher JA; Beck SA; Fernandez-Zapico ME; Farrugia G; Lazaridis KN; McWilliams RR
    Oncotarget; 2017 Apr; 8(16):27145-27154. PubMed ID: 28423702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence-Based Precision Oncology with the Cancer Targetome.
    Blucher AS; Choonoo G; Kulesz-Martin M; Wu G; McWeeney SK
    Trends Pharmacol Sci; 2017 Dec; 38(12):1085-1099. PubMed ID: 28964549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug Response Prediction by Globally Capturing Drug and Cell Line Information in a Heterogeneous Network.
    Le DH; Pham VH
    J Mol Biol; 2018 Sep; 430(18 Pt A):2993-3004. PubMed ID: 29966608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PLATYPUS: A Multiple-View Learning Predictive Framework for Cancer Drug Sensitivity Prediction.
    Graim K; Friedl V; Houlahan KE; Stuart JM
    Pac Symp Biocomput; 2019; 24():136-147. PubMed ID: 30864317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted therapy in cancer.
    Tsimberidou AM
    Cancer Chemother Pharmacol; 2015 Dec; 76(6):1113-32. PubMed ID: 26391154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature.
    Chang Y; Park H; Yang HJ; Lee S; Lee KY; Kim TS; Jung J; Shin JM
    Sci Rep; 2018 Jun; 8(1):8857. PubMed ID: 29891981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatics Approaches to Predict Drug Responses from Genomic Sequencing.
    Madhukar NS; Elemento O
    Methods Mol Biol; 2018; 1711():277-296. PubMed ID: 29344895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid identification and validation of novel targeted approaches for Glioblastoma: A combined ex vivo-in vivo pharmaco-omic model.
    Daher A; de Groot J
    Exp Neurol; 2018 Jan; 299(Pt B):281-288. PubMed ID: 28923369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.