BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 29133637)

  • 21.
    Estrella-Mendoza MF; Jiménez-Gómez F; López-Ornelas A; Pérez-Gutiérrez RM; Flores-Estrada J
    Nutrients; 2019 May; 11(5):. PubMed ID: 31137826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibitory effect of oral doxycycline on neovascularization in a rat corneal alkali burn model of angiogenesis.
    Dan L; Shi-long Y; Miao-li L; Yong-ping L; Hong-jie M; Ying Z; Xiang-gui W
    Curr Eye Res; 2008 Aug; 33(8):653-60. PubMed ID: 18696340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Upadacitinib inhibits corneal inflammation and neovascularization by suppressing M1 macrophage infiltration in the corneal alkali burn model.
    Yu J; Shen Y; Luo J; Jin J; Li P; Feng P; Guan H
    Int Immunopharmacol; 2023 Mar; 116():109680. PubMed ID: 36739832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [An experimental study on inhibition effects of KH902 on rat corneal neovascularization].
    Li Y; Deng YP; Zhang M; Tang J; Meng D
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2013 Jan; 44(1):64-7. PubMed ID: 23600212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Doxycycline enhances the inhibitory effects of bevacizumab on corneal neovascularization and prevents its side effects.
    Su W; Li Z; Li Y; Lin M; Yao L; Liu Y; He Z; Wu C; Liang D
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):9108-15. PubMed ID: 22039247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fasudil hydrochloride, a potent ROCK inhibitor, inhibits corneal neovascularization after alkali burns in mice.
    Zeng P; Pi RB; Li P; Chen RX; Lin LM; He H; Zhou SY
    Mol Vis; 2015; 21():688-98. PubMed ID: 26120273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Successful single treatment with ziv-aflibercept for existing corneal neovascularization following ocular chemical insult in the rabbit model.
    Gore A; Horwitz V; Cohen M; Gutman H; Cohen L; Gez R; Kadar T; Dachir S
    Exp Eye Res; 2018 Jun; 171():183-191. PubMed ID: 29548928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of KH902 in inhibiting suture induced corneal neovascularization].
    Wang F; Deng YP; Zhang M
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2014 May; 45(3):419-23. PubMed ID: 24941809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibited corneal neovascularization in rabbits following corneal alkali burn by double-target interference for VEGF and HIF-1α.
    Fu YC; Xin ZM
    Biosci Rep; 2019 Jan; 39(1):. PubMed ID: 30355648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of β receptor blockade through propranolol on corneal neovascularization.
    Simavli H; Erdurmus M; Terzi EH; Bucak YY; Önder Hİ; Kükner AŞ
    J Ocul Pharmacol Ther; 2014 Oct; 30(8):650-6. PubMed ID: 24983781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Nintedanib Nanothermoreversible Hydrogel on Neovascularization in an Ocular Alkali Burn Rat Model.
    Liu X; Wu S; Gong Y; Yang L
    Curr Eye Res; 2022 Dec; 47(12):1578-1589. PubMed ID: 36259508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Treatment of alkali-injured cornea by cyclosporine A-loaded electrospun nanofibers - An alternative mode of therapy.
    Cejkova J; Cejka C; Trosan P; Zajicova A; Sykova E; Holan V
    Exp Eye Res; 2016 Jun; 147():128-137. PubMed ID: 27181227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Allograft survival enhancement using doxycycline in alkali-burned mouse corneas.
    Ling S; Li W; Liu L; Zhou H; Wang T; Ye H; Liang L; Yuan J
    Acta Ophthalmol; 2013 Aug; 91(5):e369-78. PubMed ID: 23387987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of NADPH oxidases in alkali burn-induced corneal injury.
    Gu XJ; Liu X; Chen YY; Zhao Y; Xu M; Han XJ; Liu QP; Yi JL; Li JM
    Int J Mol Med; 2016 Jul; 38(1):75-82. PubMed ID: 27221536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibitory effects of the platelet-activating factor receptor antagonists, CV-3988 and Ginkgolide B, on alkali burn-induced corneal neovascularization.
    Lee CM; Jung WK; Na G; Lee DS; Park SG; Seo SK; Yang JW; Yea SS; Lee YM; Park WS; Choi IW
    Cutan Ocul Toxicol; 2015 Mar; 34(1):53-60. PubMed ID: 24754407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Safety, penetration and efficacy of topically applied bevacizumab: evaluation of eyedrops in corneal neovascularization after chemical burn.
    Yoeruek E; Ziemssen F; Henke-Fahle S; Tatar O; Tura A; Grisanti S; Bartz-Schmidt KU; Szurman P;
    Acta Ophthalmol; 2008 May; 86(3):322-8. PubMed ID: 17995975
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inflammation, vascularization and goblet cell differences in LSCD: Validating animal models of corneal alkali burns.
    Kethiri AR; Raju E; Bokara KK; Mishra DK; Basu S; Rao CM; Sangwan VS; Singh V
    Exp Eye Res; 2019 Aug; 185():107665. PubMed ID: 31095932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The long-term effect of tacrolimus on alkali burn-induced corneal neovascularization and inflammation surpasses that of anti-vascular endothelial growth factor.
    Chen L; Zhong J; Li S; Li W; Wang B; Deng Y; Yuan J
    Drug Des Devel Ther; 2018; 12():2959-2969. PubMed ID: 30254425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Blockade of the intermediate-conductance Ca(2+)-activated K+ channel inhibits the angiogenesis induced by epidermal growth factor in the treatment of corneal alkali burn.
    Yang H; Li X; Ma J; Lv X; Zhao S; Lang W; Zhang Y
    Exp Eye Res; 2013 May; 110():76-87. PubMed ID: 23482085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the effects of resveratrol and bevacizumab on experimental corneal alkali burn.
    Doganay S; Firat PG; Cankaya C; Kirimlioglu H
    Burns; 2013 Mar; 39(2):326-30. PubMed ID: 22922008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.