These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Inhibitory effect of oral doxycycline on neovascularization in a rat corneal alkali burn model of angiogenesis. Dan L; Shi-long Y; Miao-li L; Yong-ping L; Hong-jie M; Ying Z; Xiang-gui W Curr Eye Res; 2008 Aug; 33(8):653-60. PubMed ID: 18696340 [TBL] [Abstract][Full Text] [Related]
23. Upadacitinib inhibits corneal inflammation and neovascularization by suppressing M1 macrophage infiltration in the corneal alkali burn model. Yu J; Shen Y; Luo J; Jin J; Li P; Feng P; Guan H Int Immunopharmacol; 2023 Mar; 116():109680. PubMed ID: 36739832 [TBL] [Abstract][Full Text] [Related]
24. [An experimental study on inhibition effects of KH902 on rat corneal neovascularization]. Li Y; Deng YP; Zhang M; Tang J; Meng D Sichuan Da Xue Xue Bao Yi Xue Ban; 2013 Jan; 44(1):64-7. PubMed ID: 23600212 [TBL] [Abstract][Full Text] [Related]
25. Doxycycline enhances the inhibitory effects of bevacizumab on corneal neovascularization and prevents its side effects. Su W; Li Z; Li Y; Lin M; Yao L; Liu Y; He Z; Wu C; Liang D Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):9108-15. PubMed ID: 22039247 [TBL] [Abstract][Full Text] [Related]
26. Fasudil hydrochloride, a potent ROCK inhibitor, inhibits corneal neovascularization after alkali burns in mice. Zeng P; Pi RB; Li P; Chen RX; Lin LM; He H; Zhou SY Mol Vis; 2015; 21():688-98. PubMed ID: 26120273 [TBL] [Abstract][Full Text] [Related]
27. Successful single treatment with ziv-aflibercept for existing corneal neovascularization following ocular chemical insult in the rabbit model. Gore A; Horwitz V; Cohen M; Gutman H; Cohen L; Gez R; Kadar T; Dachir S Exp Eye Res; 2018 Jun; 171():183-191. PubMed ID: 29548928 [TBL] [Abstract][Full Text] [Related]
28. [Effect of KH902 in inhibiting suture induced corneal neovascularization]. Wang F; Deng YP; Zhang M Sichuan Da Xue Xue Bao Yi Xue Ban; 2014 May; 45(3):419-23. PubMed ID: 24941809 [TBL] [Abstract][Full Text] [Related]
29. Inhibited corneal neovascularization in rabbits following corneal alkali burn by double-target interference for VEGF and HIF-1α. Fu YC; Xin ZM Biosci Rep; 2019 Jan; 39(1):. PubMed ID: 30355648 [TBL] [Abstract][Full Text] [Related]
30. The effect of β receptor blockade through propranolol on corneal neovascularization. Simavli H; Erdurmus M; Terzi EH; Bucak YY; Önder Hİ; Kükner AŞ J Ocul Pharmacol Ther; 2014 Oct; 30(8):650-6. PubMed ID: 24983781 [TBL] [Abstract][Full Text] [Related]
31. Effect of Nintedanib Nanothermoreversible Hydrogel on Neovascularization in an Ocular Alkali Burn Rat Model. Liu X; Wu S; Gong Y; Yang L Curr Eye Res; 2022 Dec; 47(12):1578-1589. PubMed ID: 36259508 [TBL] [Abstract][Full Text] [Related]
32. Treatment of alkali-injured cornea by cyclosporine A-loaded electrospun nanofibers - An alternative mode of therapy. Cejkova J; Cejka C; Trosan P; Zajicova A; Sykova E; Holan V Exp Eye Res; 2016 Jun; 147():128-137. PubMed ID: 27181227 [TBL] [Abstract][Full Text] [Related]
33. Allograft survival enhancement using doxycycline in alkali-burned mouse corneas. Ling S; Li W; Liu L; Zhou H; Wang T; Ye H; Liang L; Yuan J Acta Ophthalmol; 2013 Aug; 91(5):e369-78. PubMed ID: 23387987 [TBL] [Abstract][Full Text] [Related]
34. Involvement of NADPH oxidases in alkali burn-induced corneal injury. Gu XJ; Liu X; Chen YY; Zhao Y; Xu M; Han XJ; Liu QP; Yi JL; Li JM Int J Mol Med; 2016 Jul; 38(1):75-82. PubMed ID: 27221536 [TBL] [Abstract][Full Text] [Related]
35. Inhibitory effects of the platelet-activating factor receptor antagonists, CV-3988 and Ginkgolide B, on alkali burn-induced corneal neovascularization. Lee CM; Jung WK; Na G; Lee DS; Park SG; Seo SK; Yang JW; Yea SS; Lee YM; Park WS; Choi IW Cutan Ocul Toxicol; 2015 Mar; 34(1):53-60. PubMed ID: 24754407 [TBL] [Abstract][Full Text] [Related]
36. Safety, penetration and efficacy of topically applied bevacizumab: evaluation of eyedrops in corneal neovascularization after chemical burn. Yoeruek E; Ziemssen F; Henke-Fahle S; Tatar O; Tura A; Grisanti S; Bartz-Schmidt KU; Szurman P; Acta Ophthalmol; 2008 May; 86(3):322-8. PubMed ID: 17995975 [TBL] [Abstract][Full Text] [Related]
38. The long-term effect of tacrolimus on alkali burn-induced corneal neovascularization and inflammation surpasses that of anti-vascular endothelial growth factor. Chen L; Zhong J; Li S; Li W; Wang B; Deng Y; Yuan J Drug Des Devel Ther; 2018; 12():2959-2969. PubMed ID: 30254425 [TBL] [Abstract][Full Text] [Related]
39. Blockade of the intermediate-conductance Ca(2+)-activated K+ channel inhibits the angiogenesis induced by epidermal growth factor in the treatment of corneal alkali burn. Yang H; Li X; Ma J; Lv X; Zhao S; Lang W; Zhang Y Exp Eye Res; 2013 May; 110():76-87. PubMed ID: 23482085 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of the effects of resveratrol and bevacizumab on experimental corneal alkali burn. Doganay S; Firat PG; Cankaya C; Kirimlioglu H Burns; 2013 Mar; 39(2):326-30. PubMed ID: 22922008 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]