These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29133820)

  • 1. Early Postnatal Cardiomyocyte Proliferation Requires High Oxidative Energy Metabolism.
    de Carvalho AETS; Bassaneze V; Forni MF; Keusseyan AA; Kowaltowski AJ; Krieger JE
    Sci Rep; 2017 Nov; 7(1):15434. PubMed ID: 29133820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation.
    Lopaschuk GD; Jaswal JS
    J Cardiovasc Pharmacol; 2010 Aug; 56(2):130-40. PubMed ID: 20505524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Relationship between apoptosis and alteration of the energetic metabolism pathways of hypertrophic cardiomyocytes induced by hypoxia-reoxygenation].
    Feng B; Liu W; Xu J; He ZY; Yang HB
    Sheng Li Xue Bao; 2005 Oct; 57(5):636-42. PubMed ID: 16220203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptor-interacting Protein 140 represses Sirtuin 3 to facilitate hypertrophy, mitochondrial dysfunction and energy metabolic dysfunction in cardiomyocytes.
    You J; Yue Z; Chen S; Chen Y; Lu X; Zhang X; Shen P; Li J; Han Q; Li Z; Liu P
    Acta Physiol (Oxf); 2017 May; 220(1):58-71. PubMed ID: 27614093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Down-regulation of MEIS1 promotes the maturation of oxidative phosphorylation in perinatal cardiomyocytes.
    Lindgren IM; Drake RR; Chattergoon NN; Thornburg KL
    FASEB J; 2019 Jun; 33(6):7417-7426. PubMed ID: 30884246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Misoprostol attenuates neonatal cardiomyocyte proliferation through Bnip3, perinuclear calcium signaling, and inhibition of glycolysis.
    Martens MD; Field JT; Seshadri N; Day C; Chapman D; Keijzer R; Doucette CA; Hatch GM; West AR; Ivanco TL; Gordon JW
    J Mol Cell Cardiol; 2020 Sep; 146():19-31. PubMed ID: 32640283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-Dependent Oxidative DNA Damage Does Not Correlate with Reduced Proliferation of Cardiomyocytes in Humans.
    Huang Y; Hong H; Li M; Liu J; Jiang C; Zhang H; Ye L; Zheng J
    PLoS One; 2017; 12(1):e0170351. PubMed ID: 28099512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Newborn hypoxia/anoxia inhibits cardiomyocyte proliferation and decreases cardiomyocyte endowment in the developing heart: role of endothelin-1.
    Paradis AN; Gay MS; Wilson CG; Zhang L
    PLoS One; 2015; 10(2):e0116600. PubMed ID: 25692855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of mitochondria in cardiac development and protection.
    Pohjoismäki JL; Goffart S
    Free Radic Biol Med; 2017 May; 106():345-354. PubMed ID: 28216385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response.
    Puente BN; Kimura W; Muralidhar SA; Moon J; Amatruda JF; Phelps KL; Grinsfelder D; Rothermel BA; Chen R; Garcia JA; Santos CX; Thet S; Mori E; Kinter MT; Rindler PM; Zacchigna S; Mukherjee S; Chen DJ; Mahmoud AI; Giacca M; Rabinovitch PS; Aroumougame A; Shah AM; Szweda LI; Sadek HA
    Cell; 2014 Apr; 157(3):565-79. PubMed ID: 24766806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial fatty acid utilization increases chromatin oxidative stress in cardiomyocytes.
    Menendez-Montes I; Abdisalaam S; Xiao F; Lam NT; Mukherjee S; Szweda LI; Asaithamby A; Sadek HA
    Proc Natl Acad Sci U S A; 2021 Aug; 118(34):. PubMed ID: 34417314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of hypertrophied myocytes to reactive species: implications for glycolysis and electrophile metabolism.
    Sansbury BE; Riggs DW; Brainard RE; Salabei JK; Jones SP; Hill BG
    Biochem J; 2011 Apr; 435(2):519-28. PubMed ID: 21275902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuropeptide Y damages the integrity of mitochondrial structure and disrupts energy metabolism in cultured neonatal rat cardiomyocytes.
    Luo G; Xu X; Guo W; Luo C; Wang H; Meng X; Zhu S; Wei Y
    Peptides; 2015 Sep; 71():162-9. PubMed ID: 26188175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of cardiomyocyte and muscle stem cell proliferation in pig.
    Yin B; Ren H; Cai H; Jiang Y; Zhao S; Wang H
    Exp Cell Res; 2020 Mar; 388(2):111854. PubMed ID: 31954694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial Cardiomyopathy Caused by Elevated Reactive Oxygen Species and Impaired Cardiomyocyte Proliferation.
    Zhang D; Li Y; Heims-Waldron D; Bezzerides V; Guatimosim S; Guo Y; Gu F; Zhou P; Lin Z; Ma Q; Liu J; Wang DZ; Pu WT
    Circ Res; 2018 Jan; 122(1):74-87. PubMed ID: 29021295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac Metabolism.
    Martin-Puig S; Menendez-Montes I
    Adv Exp Med Biol; 2024; 1441():365-396. PubMed ID: 38884721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial mechanism of heat stress-induced injury in rat cardiomyocyte.
    Qian L; Song X; Ren H; Gong J; Cheng S
    Cell Stress Chaperones; 2004; 9(3):281-93. PubMed ID: 15544166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal.
    Kreipke RE; Birren SJ
    J Physiol; 2015 Dec; 593(23):5057-73. PubMed ID: 26420487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of changes in energy metabolism in rat cardiomyocytes in postinfarction cardiosclerosis and diabetes mellitus.
    Afanas'ev SA; Kondrat'eva DS; Egorova MV; Popov SV
    Bull Exp Biol Med; 2013 Dec; 156(2):185-7. PubMed ID: 24319744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression.
    Cardoso AC; Lam NT; Savla JJ; Nakada Y; Pereira AHM; Elnwasany A; Menendez-Montes I; Ensley EL; Petric UB; Sharma G; Sherry AD; Malloy CR; Khemtong C; Kinter MT; Tan WLW; Anene-Nzelu CG; Foo RS; Nguyen NUN; Li S; Ahmed MS; Elhelaly WM; Abdisalaam S; Asaithamby A; Xing C; Kanchwala M; Vale G; Eckert KM; Mitsche MA; McDonald JG; Hill JA; Huang L; Shaul PW; Szweda LI; Sadek HA
    Nat Metab; 2020 Feb; 2(2):167-178. PubMed ID: 32617517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.