These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29133820)

  • 21. Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression.
    Cardoso AC; Lam NT; Savla JJ; Nakada Y; Pereira AHM; Elnwasany A; Menendez-Montes I; Ensley EL; Petric UB; Sharma G; Sherry AD; Malloy CR; Khemtong C; Kinter MT; Tan WLW; Anene-Nzelu CG; Foo RS; Nguyen NUN; Li S; Ahmed MS; Elhelaly WM; Abdisalaam S; Asaithamby A; Xing C; Kanchwala M; Vale G; Eckert KM; Mitsche MA; McDonald JG; Hill JA; Huang L; Shaul PW; Szweda LI; Sadek HA
    Nat Metab; 2020 Feb; 2(2):167-178. PubMed ID: 32617517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypoxia-induced myocardial regeneration.
    Kimura W; Nakada Y; Sadek HA
    J Appl Physiol (1985); 2017 Dec; 123(6):1676-1681. PubMed ID: 28819000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. miRNA-204 drives cardiomyocyte proliferation via targeting Jarid2.
    Liang D; Li J; Wu Y; Zhen L; Li C; Qi M; Wang L; Deng F; Huang J; Lv F; Liu Y; Ma X; Yu Z; Zhang Y; Chen YH
    Int J Cardiol; 2015 Dec; 201():38-48. PubMed ID: 26298346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of highly organized intracellular structure and energy metabolism in cardiac muscle cells during postnatal development of rat heart.
    Anmann T; Varikmaa M; Timohhina N; Tepp K; Shevchuk I; Chekulayev V; Saks V; Kaambre T
    Biochim Biophys Acta; 2014 Aug; 1837(8):1350-61. PubMed ID: 24704335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis.
    Hertz L; Peng L; Dienel GA
    J Cereb Blood Flow Metab; 2007 Feb; 27(2):219-49. PubMed ID: 16835632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidative metabolism in cancer growth.
    Ristow M
    Curr Opin Clin Nutr Metab Care; 2006 Jul; 9(4):339-45. PubMed ID: 16778561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial Ca2+ flux and respiratory enzyme activity decline are early events in cardiomyocyte response to H2O2.
    Long X; Goldenthal MJ; Wu GM; Marín-García J
    J Mol Cell Cardiol; 2004 Jul; 37(1):63-70. PubMed ID: 15242736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ErbB2 is required for cardiomyocyte proliferation in murine neonatal hearts.
    Ma H; Yin C; Zhang Y; Qian L; Liu J
    Gene; 2016 Nov; 592(2):325-30. PubMed ID: 27390088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in the mitochondrial function and in the efficiency of energy transfer pathways during cardiomyocyte aging.
    Tepp K; Puurand M; Timohhina N; Adamson J; Klepinin A; Truu L; Shevchuk I; Chekulayev V; Kaambre T
    Mol Cell Biochem; 2017 Aug; 432(1-2):141-158. PubMed ID: 28293876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of mitochondrial respiratory function in rat cardiomyocytes under different glucose conditions, using an extracellular flux analysis method.
    Tsubone H; Mutoh T
    Clin Exp Pharmacol Physiol; 2018 Dec; 45(12):1330-1333. PubMed ID: 30025173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptional Regulation of Postnatal Cardiomyocyte Maturation and Regeneration.
    Padula SL; Velayutham N; Yutzey KE
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33807107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle.
    Huss JM; Torra IP; Staels B; Giguère V; Kelly DP
    Mol Cell Biol; 2004 Oct; 24(20):9079-91. PubMed ID: 15456881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stimulation of glycolysis promotes cardiomyocyte proliferation after injury in adult zebrafish.
    Fukuda R; Marín-Juez R; El-Sammak H; Beisaw A; Ramadass R; Kuenne C; Guenther S; Konzer A; Bhagwat AM; Graumann J; Stainier DY
    EMBO Rep; 2020 Aug; 21(8):e49752. PubMed ID: 32648304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Postnatal cardiomyocyte growth and mitochondrial reorganization cause multiple changes in the proteome of human cardiomyocytes.
    Pohjoismäki JL; Krüger M; Al-Furoukh N; Lagerstedt A; Karhunen PJ; Braun T
    Mol Biosyst; 2013 Jun; 9(6):1210-9. PubMed ID: 23459711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High glucose induces mitochondrial dysfunction independently of protein O-GlcNAcylation.
    Dassanayaka S; Readnower RD; Salabei JK; Long BW; Aird AL; Zheng YT; Muthusamy S; Facundo HT; Hill BG; Jones SP
    Biochem J; 2015 Apr; 467(1):115-26. PubMed ID: 25627821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative stress-induced formation of a positive-feedback loop for the sustained activation of p38 MAPK leading to the loss of cell division in cardiomyocytes soon after birth.
    Matsuyama D; Kawahara K
    Basic Res Cardiol; 2011 Sep; 106(5):815-28. PubMed ID: 21479589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of oxidative stress in high glucose-induced apoptosis in neonatal rat cardiomyocytes.
    Zhou X; Lu X
    Exp Biol Med (Maywood); 2013 Aug; 238(8):898-902. PubMed ID: 23788170
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress.
    Liu D; Chan SL; de Souza-Pinto NC; Slevin JR; Wersto RP; Zhan M; Mustafa K; de Cabo R; Mattson MP
    Neuromolecular Med; 2006; 8(3):389-414. PubMed ID: 16775390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of intermediary metabolism in rat cardiac myocyte by extracellular glycerol.
    Gambert S; Héliès-Toussaint C; Grynberg A
    Biochim Biophys Acta; 2005 Sep; 1736(2):152-62. PubMed ID: 16153888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frataxin deficiency in neonatal rat ventricular myocytes targets mitochondria and lipid metabolism.
    Obis È; Irazusta V; Sanchís D; Ros J; Tamarit J
    Free Radic Biol Med; 2014 Aug; 73():21-33. PubMed ID: 24751525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.