These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 29133881)

  • 1. Author Correction: CLE peptide-encoding gene families in Medicago truncatula and Lotus japonicus, compared with those of soybean, common bean and Arabidopsis.
    Hastwell AH; de Bang TC; Gresshoff PM; Ferguson BJ
    Sci Rep; 2017 Nov; 7(1):15474. PubMed ID: 29133881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CLE peptide-encoding gene families in Medicago truncatula and Lotus japonicus, compared with those of soybean, common bean and Arabidopsis.
    Hastwell AH; de Bang TC; Gresshoff PM; Ferguson BJ
    Sci Rep; 2017 Aug; 7(1):9384. PubMed ID: 28839170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The soybean (Glycine max) nodulation-suppressive CLE peptide, GmRIC1, functions interspecifically in common white bean (Phaseolus vulgaris), but not in a supernodulating line mutated in the receptor PvNARK.
    Ferguson BJ; Li D; Hastwell AH; Reid DE; Li Y; Jackson SA; Gresshoff PM
    Plant Biotechnol J; 2014 Oct; 12(8):1085-97. PubMed ID: 25040127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel SINEs families in Medicago truncatula and Lotus japonicus: bioinformatic analysis.
    Gadzalski M; Sakowicz T
    Gene; 2011 Jul; 480(1-2):21-7. PubMed ID: 21352903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different functions of the histone acetyltransferase HAC1 gene traced in the model species Medicago truncatula, Lotus japonicus and Arabidopsis thaliana.
    Boycheva I; Vassileva V; Revalska M; Zehirov G; Iantcheva A
    Protoplasma; 2017 Mar; 254(2):697-711. PubMed ID: 27180194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lotus japonicus: legume research in the fast lane.
    Udvardi MK; Tabata S; Parniske M; Stougaard J
    Trends Plant Sci; 2005 May; 10(5):222-8. PubMed ID: 15882654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-Wide Identification, Evolutionary Analysis and Expression Profiles of LATERAL ORGAN BOUNDARIES DOMAIN Gene Family in Lotus japonicus and Medicago truncatula.
    Yang T; Fang GY; He H; Chen J
    PLoS One; 2016; 11(8):e0161901. PubMed ID: 27560982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LegumeTFDB: an integrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors.
    Mochida K; Yoshida T; Sakurai T; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS
    Bioinformatics; 2010 Jan; 26(2):290-1. PubMed ID: 19933159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grafting between model legumes demonstrates roles for roots and shoots in determining nodule type and host/rhizobia specificity.
    Lohar DP; VandenBosch KA
    J Exp Bot; 2005 Jun; 56(416):1643-50. PubMed ID: 15824071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana.
    Mudge J; Cannon SB; Kalo P; Oldroyd GE; Roe BA; Town CD; Young ND
    BMC Plant Biol; 2005 Aug; 5():15. PubMed ID: 16102170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and cell biology of a family of voltage-dependent anion channel porins in Lotus japonicus.
    Wandrey M; Trevaskis B; Brewin N; Udvardi MK
    Plant Physiol; 2004 Jan; 134(1):182-93. PubMed ID: 14657408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of the CLE-RS3 gene suppresses root nodulation in Lotus japonicus.
    Nishida H; Handa Y; Tanaka S; Suzaki T; Kawaguchi M
    J Plant Res; 2016 Sep; 129(5):909-919. PubMed ID: 27294965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequencing the genespaces of Medicago truncatula and Lotus japonicus.
    Young ND; Cannon SB; Sato S; Kim D; Cook DR; Town CD; Roe BA; Tabata S
    Plant Physiol; 2005 Apr; 137(4):1174-81. PubMed ID: 15824279
    [No Abstract]   [Full Text] [Related]  

  • 14. Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata.
    Grønlund M; Constantin G; Piednoir E; Kovacev J; Johansen IE; Lund OS
    Virus Res; 2008 Aug; 135(2):345-9. PubMed ID: 18495283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimates of conserved microsynteny among the genomes of Glycine max, Medicago truncatula and Arabidopsis thaliana.
    Yan HH; Mudge J; Kim DJ; Larsen D; Shoemaker RC; Cook DR; Young ND
    Theor Appl Genet; 2003 May; 106(7):1256-65. PubMed ID: 12748777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medicago truncatula transformation using leaf explants.
    Cosson V; Durand P; d'Erfurth I; Kondorosi A; Ratet P
    Methods Mol Biol; 2006; 343():115-27. PubMed ID: 16988338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-size ABC transporters from the ABCG subfamily in medicago truncatula.
    Jasinski M; Banasiak J; Radom M; Kalitkiewicz A; Figlerowicz M
    Mol Plant Microbe Interact; 2009 Aug; 22(8):921-31. PubMed ID: 19589068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soybean proteomics and its application to functional analysis.
    Komatsu S; Ahsan N
    J Proteomics; 2009 Apr; 72(3):325-36. PubMed ID: 19022415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classical ethylene insensitive mutants of the Arabidopsis EIN2 orthologue lack the expected 'hypernodulation' response in Lotus japonicus.
    Chan PK; Biswas B; Gresshoff PM
    J Integr Plant Biol; 2013 Apr; 55(4):395-408. PubMed ID: 23452324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula.
    Alunni B; Kevei Z; Redondo-Nieto M; Kondorosi A; Mergaert P; Kondorosi E
    Mol Plant Microbe Interact; 2007 Sep; 20(9):1138-48. PubMed ID: 17849716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.