BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 29134193)

  • 1. Snowball Earth climate dynamics and Cryogenian geology-geobiology.
    Hoffman PF; Abbot DS; Ashkenazy Y; Benn DI; Brocks JJ; Cohen PA; Cox GM; Creveling JR; Donnadieu Y; Erwin DH; Fairchild IJ; Ferreira D; Goodman JC; Halverson GP; Jansen MF; Le Hir G; Love GD; Macdonald FA; Maloof AC; Partin CA; Ramstein G; Rose BEJ; Rose CV; Sadler PM; Tziperman E; Voigt A; Warren SG
    Sci Adv; 2017 Nov; 3(11):e1600983. PubMed ID: 29134193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryoconite pans on Snowball Earth: supraglacial oases for Cryogenian eukaryotes?
    Hoffman PF
    Geobiology; 2016 Nov; 14(6):531-542. PubMed ID: 27422766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neoproterozoic syn-glacial carbonate precipitation and implications for a snowball Earth.
    Hood AVS; Penman DE; Lechte MA; Wallace MW; Giddings JA; Planavsky NJ
    Geobiology; 2022 Mar; 20(2):175-193. PubMed ID: 34528380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of a Snowball Earth ocean.
    Ashkenazy Y; Gildor H; Losch M; Macdonald FA; Schrag DP; Tziperman E
    Nature; 2013 Mar; 495(7439):90-3. PubMed ID: 23467167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth.
    Rooney AD; Macdonald FA; Strauss JV; Dudás FÖ; Hallmann C; Selby D
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):51-6. PubMed ID: 24344274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emplacement of the Franklin large igneous province and initiation of the Sturtian Snowball Earth.
    Pu JP; Macdonald FA; Schmitz MD; Rainbird RH; Bleeker W; Peak BA; Flowers RM; Hoffman PF; Rioux M; Hamilton MA
    Sci Adv; 2022 Nov; 8(47):eadc9430. PubMed ID: 36417531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate.
    Kennedy M; Mrofka D; von der Borch C
    Nature; 2008 May; 453(7195):642-5. PubMed ID: 18509441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initiation and long-term instability of the East Antarctic Ice Sheet.
    Gulick SPS; Shevenell AE; Montelli A; Fernandez R; Smith C; Warny S; Bohaty SM; Sjunneskog C; Leventer A; Frederick B; Blankenship DD
    Nature; 2017 Dec; 552(7684):225-229. PubMed ID: 29239353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orbital forcing of ice sheets during snowball Earth.
    Mitchell RN; Gernon TM; Cox GM; Nordsvan AR; Kirscher U; Xuan C; Liu Y; Liu X; He X
    Nat Commun; 2021 Jul; 12(1):4187. PubMed ID: 34234152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation.
    Huang KJ; Teng FZ; Shen B; Xiao S; Lang X; Ma HR; Fu Y; Peng Y
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):14904-14909. PubMed ID: 27956606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recharge of a subglacial lake by surface meltwater in northeast Greenland.
    Willis MJ; Herried BG; Bevis MG; Bell RE
    Nature; 2015 Feb; 518(7538):223-7. PubMed ID: 25607355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis.
    Kopp RE; Kirschvink JL; Hilburn IA; Nash CZ
    Proc Natl Acad Sci U S A; 2005 Aug; 102(32):11131-6. PubMed ID: 16061801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological feedbacks as cause and demise of the Neoproterozoic icehouse: astrobiological prospects for faster evolution and importance of cold conditions.
    Janhunen P; Kaartokallio H; Oksanen I; Lehto K; Lehto H
    PLoS One; 2007 Feb; 2(2):e214. PubMed ID: 17299594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The "Dirty Ice" of the McMurdo Ice Shelf: Analogues for biological oases during the Cryogenian.
    Hawes I; Jungblut AD; Matys ED; Summons RE
    Geobiology; 2018 Jul; 16(4):369-377. PubMed ID: 29527802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model.
    Hyde WT; Crowley TJ; Baum SK; Peltier WR
    Nature; 2000 May; 405(6785):425-9. PubMed ID: 10839531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf.
    Garabato AC; Forryan A; Dutrieux P; Brannigan L; Biddle LC; Heywood KJ; Jenkins A; Firing YL; Kimura S
    Nature; 2017 Feb; 542(7640):219-222. PubMed ID: 28135723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subglacial meltwater supported aerobic marine habitats during Snowball Earth.
    Lechte MA; Wallace MW; Hood AVS; Li W; Jiang G; Halverson GP; Asael D; McColl SL; Planavsky NJ
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25478-25483. PubMed ID: 31792178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Animal survival strategies in Neoproterozoic ice worlds.
    Griffiths HJ; Whittle RJ; Mitchell EG
    Glob Chang Biol; 2023 Jan; 29(1):10-20. PubMed ID: 36220153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term climate change and the geochemical cycle of carbon.
    Marshall HG; Walker JC; Kuhn WR
    J Geophys Res; 1988 Jan; 93(D1):791-801. PubMed ID: 11539746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weak tides during Cryogenian glaciations.
    Green JAM; Davies HS; Duarte JC; Creveling JR; Scotese C
    Nat Commun; 2020 Dec; 11(1):6227. PubMed ID: 33277496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.