These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29134354)

  • 1. Conventional and synthetic MRI in multiple sclerosis: a comparative study.
    Krauss W; Gunnarsson M; Nilsson M; Thunberg P
    Eur Radiol; 2018 Apr; 28(4):1692-1700. PubMed ID: 29134354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between synthetic and conventional magnetic resonance imaging in patients with multiple sclerosis and controls.
    Di Giuliano F; Minosse S; Picchi E; Marfia GA; Da Ros V; Muto M; Muto M; Pistolese CA; Laghi A; Garaci F; Floris R
    MAGMA; 2020 Aug; 33(4):549-557. PubMed ID: 31782035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered signal intensity of active enhancing inflammatory lesions using post-contrast double inversion recovery MR sequence.
    Hodel J; Badr S; Outteryck O; Lebert P; Chechin D; Benadjaoud MA; Pruvo JP; Vermersch P; Leclerc X
    Eur Radiol; 2017 Feb; 27(2):637-641. PubMed ID: 27229340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical Feasibility of Synthetic MRI in Multiple Sclerosis: A Diagnostic and Volumetric Validation Study.
    Granberg T; Uppman M; Hashim F; Cananau C; Nordin LE; Shams S; Berglund J; Forslin Y; Aspelin P; Fredrikson S; Kristoffersen-Wiberg M
    AJNR Am J Neuroradiol; 2016 Jun; 37(6):1023-9. PubMed ID: 26797137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of 2D conventional and synthetic MRI in multiple sclerosis.
    Aymerich FX; Auger C; Alonso J; Barros A; Clarke MA; Mora J; Arrambide G; Corral JF; Andrino A; Sastre-Garriga J; Rovira A
    Neuroradiology; 2022 Dec; 64(12):2315-2322. PubMed ID: 35583667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic MRI of the brain in a clinical setting.
    Blystad I; Warntjes JB; Smedby O; Landtblom AM; Lundberg P; Larsson EM
    Acta Radiol; 2012 Dec; 53(10):1158-63. PubMed ID: 23024181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Quantitative Synthetic MRI in the Evaluation of Multiple Sclerosis Lesions.
    Fujita S; Yokoyama K; Hagiwara A; Kato S; Andica C; Kamagata K; Hattori N; Abe O; Aoki S
    AJNR Am J Neuroradiol; 2021 Mar; 42(3):471-478. PubMed ID: 33414234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic MRI in the Detection of Multiple Sclerosis Plaques.
    Hagiwara A; Hori M; Yokoyama K; Takemura MY; Andica C; Tabata T; Kamagata K; Suzuki M; Kumamaru KK; Nakazawa M; Takano N; Kawasaki H; Hamasaki N; Kunimatsu A; Aoki S
    AJNR Am J Neuroradiol; 2017 Feb; 38(2):257-263. PubMed ID: 27932506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Leukocortical Lesions in Multiple Sclerosis and Their Association with Physical and Cognitive Impairment: A Comparison of Conventional and Synthetic Phase-Sensitive Inversion Recovery MRI.
    Forslin Y; Bergendal Å; Hashim F; Martola J; Shams S; Wiberg MK; Fredrikson S; Granberg T
    AJNR Am J Neuroradiol; 2018 Nov; 39(11):1995-2000. PubMed ID: 30262646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of sagittal short T1 inversion recovery and T2-weighted FSE sequences for detection of multiple sclerosis spinal cord lesions.
    Nayak NB; Salah R; Huang JC; Hathout GM
    Acta Neurol Scand; 2014 Mar; 129(3):198-203. PubMed ID: 23980614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of Unenhanced MRI in the Detection of New Brain Lesions in Multiple Sclerosis.
    Eichinger P; Schön S; Pongratz V; Wiestler H; Zhang H; Bussas M; Hoshi MM; Kirschke J; Berthele A; Zimmer C; Hemmer B; Mühlau M; Wiestler B
    Radiology; 2019 May; 291(2):429-435. PubMed ID: 30860448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of T2-weighted imaging for shoulder magnetic resonance arthrography by synthetic magnetic resonance imaging.
    Lee SH; Lee YH; Hahn S; Yang J; Song HT; Suh JS
    Acta Radiol; 2018 Aug; 59(8):959-965. PubMed ID: 29137497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-registration with subtraction and color-coding or fusion improves the detection of new and growing lesions on follow-up MRI examination of patients with multiple sclerosis.
    Adoum A; Mazzolo L; Lecler A; Sadik JC; Savatovsky J; Duron L
    Diagn Interv Imaging; 2023 Nov; 104(11):529-537. PubMed ID: 37290977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growing Region Segmentation Software (GRES) for quantitative magnetic resonance imaging of multiple sclerosis: intra- and inter-observer agreement variability: a comparison with manual contouring method.
    Parodi RC; Sardanelli F; Renzetti P; Rosso E; Losacco C; Ferrari A; Levrero F; Pilot A; Inglese M; Mancardi GL
    Eur Radiol; 2002 Apr; 12(4):866-71. PubMed ID: 11960240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The value of qualitative and quantitative assessment of lesion to cerebral cortex signal ratio on double inversion recovery sequence in the differentiation of demyelinating plaques from non-specific T2 hyperintensities.
    Hamcan S; Battal B; Akgun V; Oz O; Bozkurt Y; Tasdemir S; Sari S; Tasar M
    Eur Radiol; 2017 Feb; 27(2):763-771. PubMed ID: 27108302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Juxtacortical Lesions in Multiple Sclerosis: Assessment of Gray Matter Involvement Using Phase Difference-enhanced Imaging (PADRE).
    Futatsuya K; Kakeda S; Yoneda T; Ueda I; Watanabe K; Moriya J; Murakami Y; Ide S; Ogasawara A; Ohnari N; Okada K; Adachi H; Korogi Y
    Magn Reson Med Sci; 2016 Oct; 15(4):349-354. PubMed ID: 26841855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal evolution of acute multiple sclerosis lesions on serial sodium (
    Eisele P; Konstandin S; Szabo K; Ebert A; Roßmanith C; Paschke N; Kerschensteiner M; Platten M; Schoenberg SO; Schad LR; Gass A
    Mult Scler Relat Disord; 2019 Apr; 29():48-54. PubMed ID: 30669020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inter- and intra-observer agreement of BI-RADS-based subjective visual estimation of amount of fibroglandular breast tissue with magnetic resonance imaging: comparison to automated quantitative assessment.
    Wengert GJ; Helbich TH; Woitek R; Kapetas P; Clauser P; Baltzer PA; Vogl WD; Weber M; Meyer-Baese A; Pinker K
    Eur Radiol; 2016 Nov; 26(11):3917-3922. PubMed ID: 27108300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrast enrichment of spinal cord MR imaging using a ratio of T1-weighted and T2-weighted signals.
    Teraguchi M; Yamada H; Yoshida M; Nakayama Y; Kondo T; Ito H; Terada M; Kaneoke Y
    J Magn Reson Imaging; 2014 Nov; 40(5):1199-207. PubMed ID: 24395471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing brain MRI protocols in the follow-up of patients with multiple sclerosis T2-weighted MRI of the brain after the administration of gadopentetate dimeglumine.
    Taschner CA; Kirsch EC; Scheffler K; Wetzel SG; Schulte-Mönting J; Kappos L; Radü EW
    Magn Reson Imaging; 2005 Apr; 23(3):469-74. PubMed ID: 15862648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.