These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 29134773)
1. Design and biological functionality of a novel hybrid Ti-6Al-4V/hydrogel system for reconstruction of bone defects. Kumar A; Nune KC; Misra RDK J Tissue Eng Regen Med; 2018 Apr; 12(4):1133-1144. PubMed ID: 29134773 [TBL] [Abstract][Full Text] [Related]
2. Biological functionality and mechanistic contribution of extracellular matrix-ornamented three dimensional Ti-6Al-4V mesh scaffolds. Kumar A; Nune KC; Misra RD J Biomed Mater Res A; 2016 Nov; 104(11):2751-63. PubMed ID: 27325185 [TBL] [Abstract][Full Text] [Related]
3. 3D inkjet printing of biomaterials with strength reliability and cytocompatibility: Quantitative process strategy for Ti-6Al-4V. Barui S; Panda AK; Naskar S; Kuppuraj R; Basu S; Basu B Biomaterials; 2019 Aug; 213():119212. PubMed ID: 31152931 [TBL] [Abstract][Full Text] [Related]
4. Surface nanotopography-induced favorable modulation of bioactivity and osteoconductive potential of anodized 3D printed Ti-6Al-4V alloy mesh structure. Nune KC; Misra R; Gai X; Li SJ; Hao YL J Biomater Appl; 2018 Mar; 32(8):1032-1048. PubMed ID: 29249195 [TBL] [Abstract][Full Text] [Related]
5. 3-D printed Ti-6Al-4V scaffolds for supporting osteoblast and restricting bacterial functions without using drugs: Predictive equations and experiments. Bassous NJ; Jones CL; Webster TJ Acta Biomater; 2019 Sep; 96():662-673. PubMed ID: 31279162 [TBL] [Abstract][Full Text] [Related]
6. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Yan C; Hao L; Hussein A; Young P J Mech Behav Biomed Mater; 2015 Nov; 51():61-73. PubMed ID: 26210549 [TBL] [Abstract][Full Text] [Related]
7. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering. Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720 [TBL] [Abstract][Full Text] [Related]
8. Direct 3-D printing of Ti-6Al-4V/HA composite porous scaffolds for customized mechanical properties and biological functions. Yi T; Zhou C; Ma L; Wu L; Xu X; Gu L; Fan Y; Xian G; Fan H; Zhang X J Tissue Eng Regen Med; 2020 Mar; 14(3):486-496. PubMed ID: 32012461 [TBL] [Abstract][Full Text] [Related]
9. The integration of pore size and porosity distribution on Ti-6A1-4V scaffolds by 3D printing in the modulation of osteo-differentation. Wo J; Huang SS; Wu DY; Zhu J; Li ZZ; Yuan F J Appl Biomater Funct Mater; 2020; 18():2280800020934652. PubMed ID: 32936027 [TBL] [Abstract][Full Text] [Related]
10. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Hollander DA; von Walter M; Wirtz T; Sellei R; Schmidt-Rohlfing B; Paar O; Erli HJ Biomaterials; 2006 Mar; 27(7):955-63. PubMed ID: 16115681 [TBL] [Abstract][Full Text] [Related]
11. Osteoconductivity of bioactive Ti-6Al-4V implants with lattice-shaped interconnected large pores fabricated by electron beam melting. Goto M; Matsumine A; Yamaguchi S; Takahashi H; Akeda K; Nakamura T; Asanuma K; Matsushita T; Kokubo T; Sudo A J Biomater Appl; 2021 Apr; 35(9):1153-1167. PubMed ID: 33106079 [TBL] [Abstract][Full Text] [Related]
12. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis. Barui S; Chatterjee S; Mandal S; Kumar A; Basu B Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):812-823. PubMed ID: 27770959 [TBL] [Abstract][Full Text] [Related]
13. The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting. Kelly CN; Evans NT; Irvin CW; Chapman SC; Gall K; Safranski DL Mater Sci Eng C Mater Biol Appl; 2019 May; 98():726-736. PubMed ID: 30813077 [TBL] [Abstract][Full Text] [Related]
14. Cellular response of osteoblasts to low modulus Ti-24Nb-4Zr-8Sn alloy mesh structure. Nune KC; Misra RD; Li SJ; Hao YL; Yang R J Biomed Mater Res A; 2017 Mar; 105(3):859-870. PubMed ID: 27885781 [TBL] [Abstract][Full Text] [Related]
15. Bio-mechanical analysis of porous Ti-6Al-4V scaffold: a comprehensive review on unit cell structures in orthopaedic application. Deshmukh S; Chand A; Ghorpade R Biomed Phys Eng Express; 2024 Oct; 10(6):. PubMed ID: 39353464 [TBL] [Abstract][Full Text] [Related]
16. Mechanical properties and in vitro cytocompatibility of dense and porous Ti-6Al-4V ELI manufactured by selective laser melting technology for biomedical applications. Suresh S; Sun CN; Tekumalla S; Rosa V; Ling Nai SM; Wong RCW J Mech Behav Biomed Mater; 2021 Nov; 123():104712. PubMed ID: 34365098 [TBL] [Abstract][Full Text] [Related]
17. In-situ monitoring of the electrochemical behavior of cellular structured biomedical Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid. Gai X; Bai Y; Li S; Hou W; Hao Y; Zhang X; Yang R; Misra RDK Acta Biomater; 2020 Apr; 106():387-395. PubMed ID: 32058079 [TBL] [Abstract][Full Text] [Related]
18. Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: An in vitro and in vivo study. Ren B; Wan Y; Liu C; Wang H; Yu M; Zhang X; Huang Y Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111505. PubMed ID: 33255064 [TBL] [Abstract][Full Text] [Related]
19. Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity. Ye X; Leeflang S; Wu C; Chang J; Zhou J; Huan Z Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29077014 [TBL] [Abstract][Full Text] [Related]
20. [Evaluation of biocompatibility of Ti-6Al-4V scaffolds fabricated by electron beam melting]. Wang H; Zhao BJ; Yan RZ; Wang C; Luo CC; Hu M Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Nov; 51(11):667-672. PubMed ID: 27806759 [No Abstract] [Full Text] [Related] [Next] [New Search]