BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 2913485)

  • 1. Tacrine protection of acetylcholinesterase from inactivation by diisopropylfluorophosphate: a circular dichroism study.
    Wu CS; Yang JT
    Mol Pharmacol; 1989 Jan; 35(1):85-92. PubMed ID: 2913485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro protection of acetylcholinesterase and butyrylcholinesterase by tetrahydroaminoacridine. Comparison with physostigmine.
    Galli A; Mori F; Gori I; Lucherini M
    Biochem Pharmacol; 1992 Jun; 43(11):2427-33. PubMed ID: 1610407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of tetrahydroaminoacridine with acetylcholinesterase and butyrylcholinesterase.
    Berman HA; Leonard K
    Mol Pharmacol; 1992 Feb; 41(2):412-8. PubMed ID: 1538717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics of ligand and inhibitor interactions with acetylcholinesterase.
    Das YT; Brown HD; Chattopadhyay SK
    Biochem Cell Biol; 1987 Sep; 65(9):798-802. PubMed ID: 3440086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformers of acetylcholinesterase: a mechanism of allosteric control.
    Taylor JL; Mayer RT; Himel CM
    Mol Pharmacol; 1994 Jan; 45(1):74-83. PubMed ID: 8302283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevention of diisopropylfluorophosphate (DFP)-induced lethality by meptazinol and 9-amino-tetrahydroacridine (THA) in the mouse.
    Galli A; Mazri A; Mori F; Cecchini L; Lucherini M
    Acta Physiol Hung; 1990; 75 Suppl():125-6. PubMed ID: 2371839
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of two different cholinesterases by tacrine.
    Ahmed M; Rocha JB; Corrêa M; Mazzanti CM; Zanin RF; Morsch AL; Morsch VM; Schetinger MR
    Chem Biol Interact; 2006 Aug; 162(2):165-71. PubMed ID: 16860785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between cholinesterase inhibition and reduction in muscarinic receptors and choline uptake by repeated diisopropylfluorophosphate administration: antagonism by physostigmine and atropine.
    Yamada S; Isogai M; Okudaira H; Hayashi E
    J Pharmacol Exp Ther; 1983 Aug; 226(2):519-25. PubMed ID: 6875862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pretreatment for acute exposure to diisopropylfluorophosphate: in vivo efficacy of various acetylcholinesterase inhibitors.
    Lorke DE; Hasan MY; Nurulain SM; Shafiullah M; Kuča K; Petroianu GA
    J Appl Toxicol; 2011 Aug; 31(6):515-23. PubMed ID: 20981864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological significance of acetylcholinesterase inhibition by tetrahydroaminoacridine.
    Marquis JK
    Biochem Pharmacol; 1990 Sep; 40(5):1071-6. PubMed ID: 2390104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of the neurotoxin fasciculin 2 to the acetylcholinesterase peripheral site drastically reduces the association and dissociation rate constants for N-methylacridinium binding to the active site.
    Rosenberry TL; Rabl CR; Neumann E
    Biochemistry; 1996 Jan; 35(3):685-90. PubMed ID: 8547248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diisopropylfluorophosphate inhibits acetylcholinesterase activity and disrupts somitogenesis in the zebrafish.
    Hanneman EH
    J Exp Zool; 1992 Aug; 263(1):41-53. PubMed ID: 1645120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal packing mediates enantioselective ligand recognition at the peripheral site of acetylcholinesterase.
    Haviv H; Wong DM; Greenblatt HM; Carlier PR; Pang YP; Silman I; Sussman JL
    J Am Chem Soc; 2005 Aug; 127(31):11029-36. PubMed ID: 16076210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity analysis on a physiologically-based pharmacokinetic and pharmacodynamic model for diisopropylfluorophosphate-induced toxicity in mice and rats.
    Chen K; Teo S; Seng KY
    Toxicol Mech Methods; 2009 Oct; 19(8):486-97. PubMed ID: 19788408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro inhibitory effect of aflatoxin B1 on acetylcholinesterase activity in mouse brain.
    Cometa MF; Lorenzini P; Fortuna S; Volpe MT; Meneguz A; Palmery M
    Toxicology; 2005 Jan; 206(1):125-35. PubMed ID: 15590113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of 1,2,3,4-tetrahydro-9-aminoacridine (THA) as a pretreatment drug for protection of mice from acute diisopropylfluorophosphate (DFP) intoxication.
    Galli A; Mori F
    Arch Toxicol; 1991; 65(4):330-4. PubMed ID: 1953352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, in vitro pharmacology, and molecular modeling of very potent tacrine-huperzine A hybrids as acetylcholinesterase inhibitors of potential interest for the treatment of Alzheimer's disease.
    Camps P; El Achab R; Görbig DM; Morral J; Muñoz-Torrero D; Badia A; Eladi Baños J; Vivas NM; Barril X; Orozco M; Luque FJ
    J Med Chem; 1999 Aug; 42(17):3227-42. PubMed ID: 10464010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The aryl acylamidase activity is much more sensitive to Alzheimer drugs than the esterase activity of acetylcholinesterase in chicken embryonic brain.
    Rajesh RV; Chitra L; Layer PG; Boopathy R
    Biochimie; 2009 Sep; 91(9):1087-94. PubMed ID: 19607873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands.
    Szegletes T; Mallender WD; Rosenberry TL
    Biochemistry; 1998 Mar; 37(12):4206-16. PubMed ID: 9521743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity binding-guided fluorescent nanobiosensor for acetylcholinesterase inhibitors via distance modulation between the fluorophore and metallic nanoparticle.
    Zhang Y; Hei T; Cai Y; Gao Q; Zhang Q
    Anal Chem; 2012 Mar; 84(6):2830-6. PubMed ID: 22339669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.