These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 29134923)

  • 1. Coefficient of friction, walking speed and cadence on slippery and dry surfaces: shoes with different groove depths.
    Ziaei M; Mokhtarinia H; Tabatabai Ghomshe F; Maghsoudipour M
    Int J Occup Saf Ergon; 2019 Dec; 25(4):524-529. PubMed ID: 29134923
    [No Abstract]   [Full Text] [Related]  

  • 2. Gait kinetics impact shoe tread wear rate.
    Hemler SL; Sider JR; Redfern MS; Beschorner KE
    Gait Posture; 2021 May; 86():157-161. PubMed ID: 33735824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid pressures at the shoe-floor-contaminant interface during slips: effects of tread and implications on slip severity.
    Beschorner KE; Albert DL; Chambers AJ; Redfern MS
    J Biomech; 2014 Jan; 47(2):458-63. PubMed ID: 24267270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting slips based on the STM 603 whole-footwear tribometer under different coefficient of friction testing conditions.
    Beschorner KE; Iraqi A; Redfern MS; Cham R; Li Y
    Ergonomics; 2019 May; 62(5):668-681. PubMed ID: 30638144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospective validity assessment of a friction prediction model based on tread outsole features of slip-resistant shoes.
    Beschorner KE; Nasarwanji M; Deschler C; Hemler SL
    Appl Ergon; 2024 Jan; 114():104110. PubMed ID: 37595332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An observational ergonomic tool for assessing the worn condition of slip-resistant shoes.
    Beschorner KE; Siegel JL; Hemler SL; Sundaram VH; Chanda A; Iraqi A; Haight JM; Redfern MS
    Appl Ergon; 2020 Oct; 88():103140. PubMed ID: 32678768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in under-shoe traction and fluid drainage for progressively worn shoe tread.
    Hemler SL; Charbonneau DN; Iraqi A; Redfern MS; Haight JM; Moyer BE; Beschorner KE
    Appl Ergon; 2019 Oct; 80():35-42. PubMed ID: 31280808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traction performance across the life of slip-resistant footwear: Preliminary results from a longitudinal study.
    Hemler SL; Pliner EM; Redfern MS; Haight JM; Beschorner KE
    J Safety Res; 2020 Sep; 74():219-225. PubMed ID: 32951786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of coefficient of friction based on footwear outsole features.
    Iraqi A; Vidic NS; Redfern MS; Beschorner KE
    Appl Ergon; 2020 Jan; 82():102963. PubMed ID: 31580996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematics and kinetics of the shoe during human slips.
    Iraqi A; Cham R; Redfern MS; Vidic NS; Beschorner KE
    J Biomech; 2018 Jun; 74():57-63. PubMed ID: 29759653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of averaging time-interval on shoe-floor-contaminant available coefficient of friction measurements.
    Beschorner KE; Iraqi A; Redfern MS; Moyer BE; Cham R
    Appl Ergon; 2020 Jan; 82():102959. PubMed ID: 31568960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Worn region size of shoe outsole impacts human slips: Testing a mechanistic model.
    Sundaram VH; Hemler SL; Chanda A; Haight JM; Redfern MS; Beschorner KE
    J Biomech; 2020 May; 105():109797. PubMed ID: 32423543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perception of slipperiness and prospective risk of slipping at work.
    Courtney TK; Verma SK; Chang WR; Huang YH; Lombardi DA; Brennan MJ; Perry MJ
    Occup Environ Med; 2013 Jan; 70(1):35-40. PubMed ID: 22935953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of unstable shoes on energy cost during treadmill walking at various speeds.
    Koyama K; Naito H; Ozaki H; Yanagiya T
    J Sports Sci Med; 2012; 11(4):632-7. PubMed ID: 24150072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning prediction of footwear slip resistance on glycerol-contaminated surfaces: A pilot study.
    Lau K; Yamaguchi T; Shibata K; Nishi T; Fernie G; Fekr AR
    Appl Ergon; 2024 May; 117():104249. PubMed ID: 38368655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of natural shoe wear on traction performance: a longitudinal study.
    Hemler SL; Pliner EM; Redfern MS; Haight JM; Beschorner KE
    Footwear Sci; 2022; 14(1):1-12. PubMed ID: 37701063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of age related sensory degradation on perception of floor slipperiness and associated slip parameters.
    Lockhart TE; Woldstad JC; Smith JL; Ramsey JD
    Saf Sci; 2002 Nov; 40(7-8):689-703. PubMed ID: 20607132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of shoe traction and obstacle height on lower extremity coordination dynamics during walking.
    Decker L; Houser JJ; Noble JM; Karst GM; Stergiou N
    Appl Ergon; 2009 Sep; 40(5):895-903. PubMed ID: 19187929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic review of the measures that have been used to assess surface characteristics in relation to their impact on walking and falling.
    Lawson R; Thomas NDA
    Syst Rev; 2023 Sep; 12(1):155. PubMed ID: 37660050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age related effects of transitional floor surfaces and obstruction of view on gait characteristics related to slips and falls.
    Bunterngchit Y; Lockhart T; Woldstad JC; Smith JL
    Int J Ind Ergon; 2000 Feb; 25(3):223-232. PubMed ID: 20607122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.