BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 29134930)

  • 1. Involvement of many chemotaxis sensors in negative chemotaxis to ethanol in
    Oku S; Hida A; Mattana T; Tajima T; Nakashimada Y; Kato J
    Microbiology (Reading); 2017 Dec; 163(12):1880-1889. PubMed ID: 29134930
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of the mcpA and mcpM genes, encoding methyl-accepting proteins involved in amino acid and l-malate chemotaxis, and involvement of McpM-mediated chemotaxis in plant infection by Ralstonia pseudosolanacearum (formerly Ralstonia solanacearum phylotypes I and III).
    Hida A; Oku S; Kawasaki T; Nakashimada Y; Tajima T; Kato J
    Appl Environ Microbiol; 2015 Nov; 81(21):7420-30. PubMed ID: 26276117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative chemotaxis of Ralstonia pseudosolanacearum to maleate and identification of the maleate chemosensory protein.
    Tunchai M; Hida A; Oku S; Nakashimada Y; Nikata T; Tajima T; Kato J
    J Biosci Bioeng; 2017 Dec; 124(6):647-652. PubMed ID: 28743655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two citrate chemoreceptors involved in chemotaxis to citrate and/or citrate-metal complexes in Ralstonia pseudosolanacearum.
    Hida A; Tajima T; Kato J
    J Biosci Bioeng; 2019 Feb; 127(2):169-175. PubMed ID: 30082220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of chemosensors for d-malate, unnatural enantiomer of malate, in Ralstonia pseudosolanacearum.
    Tunchai M; Hida A; Oku S; Nakashimada Y; Tajima T; Kato J
    Microbiology (Reading); 2017 Feb; 163(2):233-242. PubMed ID: 27926824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of boric acid as a novel chemoattractant and elucidation of its chemoreceptor in Ralstonia pseudosolanacearum Ps29.
    Hida A; Oku S; Nakashimada Y; Tajima T; Kato J
    Sci Rep; 2017 Aug; 7(1):8609. PubMed ID: 28819159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemotactic disruption as a method to control bacterial wilt caused by Ralstonia pseudosolanacearum.
    Tunchai M; Hida A; Oku S; Tajima T; Kato J
    Biosci Biotechnol Biochem; 2021 Feb; 85(3):697-702. PubMed ID: 33624770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scarless deletion of up to seven methyl-accepting chemotaxis genes with an optimized method highlights key function of CheM in Salmonella Typhimurium.
    Hoffmann S; Schmidt C; Walter S; Bender JK; Gerlach RG
    PLoS One; 2017; 12(2):e0172630. PubMed ID: 28212413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudomonas putida F1 has multiple chemoreceptors with overlapping specificity for organic acids.
    Parales RE; Luu RA; Chen GY; Liu X; Wu V; Lin P; Hughes JG; Nesteryuk V; Parales JV; Ditty JL
    Microbiology (Reading); 2013 Jun; 159(Pt 6):1086-1096. PubMed ID: 23618999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of chemosensory proteins for trichloroethylene in Pseudomonas aeruginosa.
    Shitashiro M; Tanaka H; Hong CS; Kuroda A; Takiguchi N; Ohtake H; Kato J
    J Biosci Bioeng; 2005 Apr; 99(4):396-402. PubMed ID: 16233808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of methyl-accepting chemotaxis proteins (MCPs) for amino acids in plant-growth-promoting rhizobacterium
    Hida A; Oku S; Miura M; Matsuda H; Tajima T; Kato J
    Biosci Biotechnol Biochem; 2020 Sep; 84(9):1948-1957. PubMed ID: 32538292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repellents for Escherichia coli operate neither by changing membrane fluidity nor by being sensed by periplasmic receptors during chemotaxis.
    Eisenbach M; Constantinou C; Aloni H; Shinitzky M
    J Bacteriol; 1990 Sep; 172(9):5218-24. PubMed ID: 2203744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of the chemotactic transducer in Pseudomonas aeruginosa PAO1 for positive chemotaxis to trichloroethylene.
    Kim HE; Shitashiro M; Kuroda A; Takiguchi N; Ohtake H; Kato J
    J Bacteriol; 2006 Sep; 188(18):6700-2. PubMed ID: 16952963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comamonas testosteroni uses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds.
    Ni B; Huang Z; Fan Z; Jiang CY; Liu SJ
    Mol Microbiol; 2013 Nov; 90(4):813-23. PubMed ID: 24102855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CheR- and CheB-dependent chemosensory adaptation system of Rhodobacter sphaeroides.
    Martin AC; Wadhams GH; Shah DS; Porter SL; Mantotta JC; Craig TJ; Verdult PH; Jones H; Armitage JP
    J Bacteriol; 2001 Dec; 183(24):7135-44. PubMed ID: 11717272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular Stoichiometry of Methyl-Accepting Chemotaxis Proteins in Sinorhizobium meliloti.
    Zatakia HM; Arapov TD; Meier VM; Scharf BE
    J Bacteriol; 2018 Mar; 200(6):. PubMed ID: 29263102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a methyl-accepting chemotaxis protein in Rhodobacter sphaeroides.
    Ward MJ; Harrison DM; Ebner MJ; Armitage JP
    Mol Microbiol; 1995 Oct; 18(1):115-21. PubMed ID: 8596451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The roles of the multiple CheW and CheA homologues in chemotaxis and in chemoreceptor localization in Rhodobacter sphaeroides.
    Martin AC; Wadhams GH; Armitage JP
    Mol Microbiol; 2001 Jun; 40(6):1261-72. PubMed ID: 11442826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the nodulation plasmid encoded chemoreceptor gene mcpG from Rhizobium leguminosarum.
    Yost CK; Clark KT; Del Bel KL; Hynes MF
    BMC Microbiol; 2003 Jan; 3():1. PubMed ID: 12553885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel methyl transfer during chemotaxis in Bacillus subtilis.
    Thoelke MS; Kirby JR; Ordal GW
    Biochemistry; 1989 Jun; 28(13):5585-9. PubMed ID: 2505839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.