These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 29134992)

  • 1. Formation of C
    Ling L; Wang Q; Zhang R; Li D; Wang B
    Phys Chem Chem Phys; 2017 Nov; 19(45):30883-30894. PubMed ID: 29134992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol synthesis from syngas over Cu(Pd)-doped Fe(100): a systematic theoretical investigation.
    Wang W; Wang Y; Wang GC
    Phys Chem Chem Phys; 2018 Jan; 20(4):2492-2507. PubMed ID: 29313538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the mechanism about the initiation, growth and termination of the C-C chain in syngas conversion on the Co(0001) surface: a theoretical study.
    Wen G; Wang Q; Zhang R; Li D; Wang B
    Phys Chem Chem Phys; 2016 Oct; 18(39):27272-27283. PubMed ID: 27711700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon chain growth by formyl coupling over the Cu/γ-AlOOH(001) surface in syngas conversion.
    Bai H; Ma M; Bai B; Cao H; Zhang L; Gao Z; Vinokurov VA; Huang W
    Phys Chem Chem Phys; 2018 Dec; 21(1):148-159. PubMed ID: 30515495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Synthesis of Ethanol from CH
    Zuo ZJ; Peng F; Huang W
    Sci Rep; 2016 Oct; 6():34670. PubMed ID: 27694944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic Selectivity and Structure Sensitivity of Rhodium Catalysts for C(2+) Oxygenate Production.
    Yang N; Medford AJ; Liu X; Studt F; Bligaard T; Bent SF; Nørskov JK
    J Am Chem Soc; 2016 Mar; 138(11):3705-14. PubMed ID: 26958997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into the mechanism of methanol assistance with syngas conversion over partially hydroxylated γ-Al
    Bai B; Bai H; Cao HJ; Gao ZH; Zuo ZJ; Huang W
    Phys Chem Chem Phys; 2018 May; 20(18):12845-12857. PubMed ID: 29700517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching CO
    Liu Z; Song L; Lv X; Liu M; Wen Q; Qian L; Wang H; Wang M; Han Q; Zheng G
    J Am Chem Soc; 2024 May; 146(20):14260-14266. PubMed ID: 38714344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the mechanism of ethanol synthesis and ethyl acetate inhibition from acetic acid hydrogenation over Cu
    Liu J; Lyu H; Chen Y; Li G; Jiang H; Zhang M
    Phys Chem Chem Phys; 2017 Oct; 19(41):28083-28097. PubMed ID: 28994834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of ethanol synthesis from syngas on Rh(111).
    Choi Y; Liu P
    J Am Chem Soc; 2009 Sep; 131(36):13054-61. PubMed ID: 19702298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Proximity of Rh
    Yu J; Liu T; Gu Q; Wang J; Han Y; Li G; Guo Q; Gu Y; Wu X; Gong X; Yang B; Mao D
    Angew Chem Int Ed Engl; 2024 May; 63(20):e202401568. PubMed ID: 38506189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The formation mechanism of the initial C-C chain in ethanol synthesis on γ-AlOOH(100).
    Zhang L; Bai B; Bai H; Huang W; Gao ZH; Zuo ZJ; Lv YK
    Phys Chem Chem Phys; 2017 Jul; 19(29):19300-19307. PubMed ID: 28702626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol.
    Yue H; Ma X; Gong J
    Acc Chem Res; 2014 May; 47(5):1483-92. PubMed ID: 24571103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cost-effective promoter-doped Cu-based bimetallic catalysts for the selective hydrogenation of C
    Zhang R; Zhao B; He L; Wang A; Wang B
    Phys Chem Chem Phys; 2018 Jun; 20(25):17487-17496. PubMed ID: 29911703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Production of Higher Oxygenates by Syngas Conversion over a Multifunctional Catalyst.
    Lin T; Qi X; Wang X; Xia L; Wang C; Yu F; Wang H; Li S; Zhong L; Sun Y
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4627-4631. PubMed ID: 30710403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic insights into higher alcohol synthesis from syngas on Rh/Cu single-atom alloy catalysts.
    Gao Y; Shi L; Li S; Ren Q
    Phys Chem Chem Phys; 2020 Mar; 22(9):5070-5077. PubMed ID: 32073061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical insights into the promotion effect of subsurface boron for the selective hydrogenation of CO to methanol over Pd catalysts.
    Wu P; Yang B
    Phys Chem Chem Phys; 2016 Aug; 18(31):21720-9. PubMed ID: 27431927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic Effects in Bimetallic Palladium-Copper Catalysts Improve Selectivity in Oxygenate Coupling Reactions.
    Goulas KA; Sreekumar S; Song Y; Kharidehal P; Gunbas G; Dietrich PJ; Johnson GR; Wang YC; Grippo AM; Grabow LC; Gokhale AA; Toste FD
    J Am Chem Soc; 2016 Jun; 138(21):6805-12. PubMed ID: 27195582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constrained Chemical Dynamics of CO Dissociation/Hydrogenation on Rh Surfaces.
    Kraus P; Frank I
    Chemistry; 2018 May; 24(28):7188-7199. PubMed ID: 29464790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial oxidation of ethane to oxygenates using Fe- and Cu-containing ZSM-5.
    Forde MM; Armstrong RD; Hammond C; He Q; Jenkins RL; Kondrat SA; Dimitratos N; Lopez-Sanchez JA; Taylor SH; Willock D; Kiely CJ; Hutchings GJ
    J Am Chem Soc; 2013 Jul; 135(30):11087-99. PubMed ID: 23802759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.