BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 29135061)

  • 1. Transmembrane Signaling with Lipid-Bilayer Assemblies as a Platform for Channel-Based Biosensing.
    Sugawara M
    Chem Rec; 2018 Apr; 18(4):433-444. PubMed ID: 29135061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method for artificial lipid-bilayer formation.
    Ide T; Ichikawa T
    Biosens Bioelectron; 2005 Oct; 21(4):672-7. PubMed ID: 16202882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated microfluidic biosensing platform for simultaneous confocal microscopy and electrophysiological measurements on bilayer lipid membranes and ion channels.
    Schulze Greiving VC; de Boer HL; Bomer JG; van den Berg A; Le Gac S
    Electrophoresis; 2018 Feb; 39(3):496-503. PubMed ID: 29193178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore-forming compounds as signal transduction elements for highly sensitive biosensing.
    Sugawara M; Shoji A; Sakamoto M
    Anal Sci; 2014; 30(1):119-28. PubMed ID: 24420253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supported membrane nanodevices.
    Anrather D; Smetazko M; Saba M; Alguel Y; Schalkhammer T
    J Nanosci Nanotechnol; 2004; 4(1-2):1-22. PubMed ID: 15112538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency-Based Analysis of Gramicidin A Nanopores Enabling Detection of Small Molecules with Picomolar Sensitivity.
    Kim YH; Hang L; Cifelli JL; Sept D; Mayer M; Yang J
    Anal Chem; 2018 Feb; 90(3):1635-1642. PubMed ID: 29266927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-channel recordings of gramicidin at agarose-supported bilayer lipid membranes formed by the tip-dip and painting methods.
    Matsuno Y; Osono C; Hirano A; Sugawara M
    Anal Sci; 2004 Aug; 20(8):1217-21. PubMed ID: 15352514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar lipid bilayers containing gramicidin A as a molecular sensing system based on an integrated current.
    Nishio M; Shoji A; Sugawara M
    Anal Sci; 2012; 28(7):661-7. PubMed ID: 22790367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gramicidin A channels switch between stretch activation and stretch inactivation depending on bilayer thickness.
    Martinac B; Hamill OP
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4308-12. PubMed ID: 11904391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mechanosensitivity of gramicidin A channels in semispherical bilayer membranes at constant tension].
    Markin VS; Shlenskiĭ VG; Saimon SA; Benos DD; Ismailov II
    Biofizika; 2006; 51(6):1014-8. PubMed ID: 17175912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen exchange in the lipid bilayer-bound gramicidin channel.
    Huo S; Arumugam S; Cross TA
    Solid State Nucl Magn Reson; 1996 Dec; 7(3):177-83. PubMed ID: 9050155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of streptavidins with varying biotin binding affinities on the properties of biotinylated gramicidin channels.
    Antonenko YN; Rokitskaya TI; Kotova EA; Reznik GO; Sano T; Cantor CR
    Biochemistry; 2004 Apr; 43(15):4575-82. PubMed ID: 15078104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single-channel sensor based on gramicidin controlled by molecular recognition at bilayer lipid membranes containing receptor.
    Hirano A; Wakabayashi M; Matsuno Y; Sugawara M
    Biosens Bioelectron; 2003 Aug; 18(8):973-83. PubMed ID: 12782460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association.
    O'Connell AM; Koeppe RE; Andersen OS
    Science; 1990 Nov; 250(4985):1256-9. PubMed ID: 1700867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-dependent formation of gramicidin channels in lipid bilayers.
    Sandblom J; Galvanovskis J; Jilderos B
    Biophys J; 2001 Aug; 81(2):827-37. PubMed ID: 11463628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip stochastic resonance of ion channel systems with variable internal noise.
    Stava E; Choi S; Kim HS; Blick RH
    IEEE Trans Nanobioscience; 2012 Jun; 11(2):169-75. PubMed ID: 22411054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers.
    Lundbaek JA; Andersen OS
    J Gen Physiol; 1994 Oct; 104(4):645-73. PubMed ID: 7530766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion-channel sensing of ferricyanide anion based on a supported bilayer lipid membrane.
    Han X; Wang E
    Anal Sci; 2001 Oct; 17(10):1171-4. PubMed ID: 11990590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Well-defined microapertures for ion channel biosensors.
    Halža E; Bro TH; Bilenberg B; Koçer A
    Anal Chem; 2013 Jan; 85(2):811-5. PubMed ID: 23256755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.