These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29135084)

  • 1. Identification of Bioactive Scaffolds Based on QSAR Models.
    Nakagawa T; Miyao T; Funatsu K
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29135084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the scaffold universe of kinase inhibitors.
    Hu Y; Bajorath J
    J Med Chem; 2015 Jan; 58(1):315-32. PubMed ID: 25192260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining for bioactive scaffolds with scaffold networks: improved compound set enrichment from primary screening data.
    Varin T; Schuffenhauer A; Ertl P; Renner S
    J Chem Inf Model; 2011 Jul; 51(7):1528-38. PubMed ID: 21615076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small molecule databases and chemical descriptors useful in chemoinformatics: an overview.
    Gozalbes R; Pineda-Lucena A
    Comb Chem High Throughput Screen; 2011 Jul; 14(6):548-458. PubMed ID: 21521149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSAR classification model for antibacterial compounds and its use in virtual screening.
    Singh N; Chaudhury S; Liu R; AbdulHameed MD; Tawa G; Wallqvist A
    J Chem Inf Model; 2012 Oct; 52(10):2559-69. PubMed ID: 23013546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of functional groups in predicting the activity of small molecule inhibitors for Bcl-2 and Bcl-xL.
    Kanakaveti V; Sakthivel R; Rayala SK; Gromiha MM
    Chem Biol Drug Des; 2017 Aug; 90(2):308-316. PubMed ID: 28112863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic generation of chemical structures for rational drug design based on QSAR models.
    Funatsu K; Miyao T; Arakawa M
    Curr Comput Aided Drug Des; 2011 Mar; 7(1):1-9. PubMed ID: 20550510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping Biological Activities to Different Types of Molecular Scaffolds: Exemplary Application to Protein Kinase Inhibitors.
    Dimova D; Bajorath J
    Methods Mol Biol; 2018; 1825():327-337. PubMed ID: 30334211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration of Scaffolds from Natural Products with Antiplasmodial Activities, Currently Registered Antimalarial Drugs and Public Malarial Screen Data.
    Egieyeh S; Syce J; Christoffels A; Malan SF
    Molecules; 2016 Jan; 21(1):104. PubMed ID: 26784165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Privileged structures: efficient chemical "navigators" toward unexplored biologically relevant chemical spaces.
    Kim J; Kim H; Park SB
    J Am Chem Soc; 2014 Oct; 136(42):14629-38. PubMed ID: 25310802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation.
    Tang H; Wang XS; Huang XP; Roth BL; Butler KV; Kozikowski AP; Jung M; Tropsha A
    J Chem Inf Model; 2009 Feb; 49(2):461-76. PubMed ID: 19182860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A data mining method to facilitate SAR transfer.
    Wassermann AM; Bajorath J
    J Chem Inf Model; 2011 Aug; 51(8):1857-66. PubMed ID: 21774471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consensus model for identification of novel PI3K inhibitors in large chemical library.
    Liew CY; Ma XH; Yap CW
    J Comput Aided Mol Des; 2010 Feb; 24(2):131-41. PubMed ID: 20148286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic assessment of scaffold hopping versus activity cliff formation across bioactive compound classes following a molecular hierarchy.
    Stumpfe D; Dimova D; Bajorath J
    Bioorg Med Chem; 2015 Jul; 23(13):3183-91. PubMed ID: 25982076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Modeling of β-Secretase 1 (BACE-1) Inhibitors Using Ligand Based Approaches.
    Subramanian G; Ramsundar B; Pande V; Denny RA
    J Chem Inf Model; 2016 Oct; 56(10):1936-1949. PubMed ID: 27689393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target family-directed exploration of scaffolds with different SAR profiles.
    Hu Y; Bajorath J
    J Chem Inf Model; 2011 Dec; 51(12):3138-48. PubMed ID: 22091691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iterative Screening Methods for Identification of Chemical Compounds with Specific Values of Various Properties.
    Miyao T; Funatsu K
    J Chem Inf Model; 2019 Jun; 59(6):2626-2641. PubMed ID: 31058504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General Approach to Estimate Error Bars for Quantitative Structure-Activity Relationship Predictions of Molecular Activity.
    Liu R; Glover KP; Feasel MG; Wallqvist A
    J Chem Inf Model; 2018 Aug; 58(8):1561-1575. PubMed ID: 29949366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-activity relationship analysis and virtual screening studies for identifying HDAC2 inhibitors from known HDAC bioactive chemical libraries.
    Pham-The H; Casañola-Martin G; Diéguez-Santana K; Nguyen-Hai N; Ngoc NT; Vu-Duc L; Le-Thi-Thu H
    SAR QSAR Environ Res; 2017 Mar; 28(3):199-220. PubMed ID: 28332438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.
    Mohr JA; Jain BJ; Obermayer K
    J Chem Inf Model; 2008 Sep; 48(9):1868-81. PubMed ID: 18767832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.