These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 29135225)
1. Regional Variations of Spontaneous, Transient Adenosine Release in Brain Slices. Lee ST; Venton BJ ACS Chem Neurosci; 2018 Mar; 9(3):505-513. PubMed ID: 29135225 [TBL] [Abstract][Full Text] [Related]
2. Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex. Nguyen MD; Lee ST; Ross AE; Ryals M; Choudhry VI; Venton BJ PLoS One; 2014; 9(1):e87165. PubMed ID: 24494035 [TBL] [Abstract][Full Text] [Related]
3. Correlation of transient adenosine release and oxygen changes in the caudate-putamen. Wang Y; Venton BJ J Neurochem; 2017 Jan; 140(1):13-23. PubMed ID: 27314215 [TBL] [Abstract][Full Text] [Related]
4. Adenosine transiently modulates stimulated dopamine release in the caudate-putamen via A1 receptors. Ross AE; Venton BJ J Neurochem; 2015 Jan; 132(1):51-60. PubMed ID: 25219576 [TBL] [Abstract][Full Text] [Related]
5. Comparison of spontaneous and mechanically-stimulated adenosine release in mice. Wang Y; Venton BJ Neurochem Int; 2019 Mar; 124():46-50. PubMed ID: 30579856 [TBL] [Abstract][Full Text] [Related]
6. Transient Adenosine Release Is Modulated by NMDA and GABA Nguyen MD; Wang Y; Ganesana M; Venton BJ ACS Chem Neurosci; 2017 Feb; 8(2):376-385. PubMed ID: 28071892 [TBL] [Abstract][Full Text] [Related]
7. Modulation of cGMP accumulation by adenosine A1 receptors at the hippocampus: influence of cGMP levels and gender. Serpa A; Sebastião AM; Cascalheira JF Eur J Pharmacol; 2014 Dec; 744():83-90. PubMed ID: 25300679 [TBL] [Abstract][Full Text] [Related]
8. Mechanical stimulation evokes rapid increases in extracellular adenosine concentration in the prefrontal cortex. Ross AE; Nguyen MD; Privman E; Venton BJ J Neurochem; 2014 Jul; 130(1):50-60. PubMed ID: 24606335 [TBL] [Abstract][Full Text] [Related]
9. Complex sex and estrous cycle differences in spontaneous transient adenosine. Borgus JR; Puthongkham P; Venton BJ J Neurochem; 2020 Apr; 153(2):216-229. PubMed ID: 32040198 [TBL] [Abstract][Full Text] [Related]
10. Species differences in brain adenosine A1 receptor pharmacology revealed by use of xanthine and pyrazolopyridine based antagonists. Maemoto T; Finlayson K; Olverman HJ; Akahane A; Horton RW; Butcher SP Br J Pharmacol; 1997 Nov; 122(6):1202-8. PubMed ID: 9401787 [TBL] [Abstract][Full Text] [Related]
11. Extracellular adenosine concentrations during in vitro ischaemia in rat hippocampal slices. Latini S; Bordoni F; Pedata F; Corradetti R Br J Pharmacol; 1999 Jun; 127(3):729-39. PubMed ID: 10401564 [TBL] [Abstract][Full Text] [Related]
12. Adenosine A1 antagonism increases specific synaptic forms of glutamate release during anoxia, revealing a unique source of excitation. Katchman AN; Hershkowitz N Hippocampus; 1996; 6(3):213-24. PubMed ID: 8841822 [TBL] [Abstract][Full Text] [Related]
13. Spontaneous, transient adenosine release is not enhanced in the CA1 region of hippocampus during severe ischemia models. Ganesana M; Venton BJ J Neurochem; 2021 Dec; 159(5):887-900. PubMed ID: 34453336 [TBL] [Abstract][Full Text] [Related]
14. Automated Algorithm for Detection of Transient Adenosine Release. Borman RP; Wang Y; Nguyen MD; Ganesana M; Lee ST; Venton BJ ACS Chem Neurosci; 2017 Feb; 8(2):386-393. PubMed ID: 28196418 [TBL] [Abstract][Full Text] [Related]
15. Effects of A1 receptor agonist/antagonist on spontaneous seizures in pilocarpine-induced epileptic rats. Amorim BO; Hamani C; Ferreira E; Miranda MF; Fernandes MJS; Rodrigues AM; de Almeida AG; Covolan L Epilepsy Behav; 2016 Aug; 61():168-173. PubMed ID: 27371881 [TBL] [Abstract][Full Text] [Related]
16. Noninvasive limb remote ischemic preconditioning contributes neuroprotective effects via activation of adenosine A1 receptor and redox status after transient focal cerebral ischemia in rats. Hu S; Dong H; Zhang H; Wang S; Hou L; Chen S; Zhang J; Xiong L Brain Res; 2012 Jun; 1459():81-90. PubMed ID: 22560096 [TBL] [Abstract][Full Text] [Related]
17. Nitric oxide-induced adenosine inhibition of hippocampal synaptic transmission depends on adenosine kinase inhibition and is cyclic GMP independent. Arrigoni E; Rosenberg PA Eur J Neurosci; 2006 Nov; 24(9):2471-80. PubMed ID: 17100836 [TBL] [Abstract][Full Text] [Related]
18. C-Jun N-terminal kinase regulates adenosine A1 receptor-mediated synaptic depression in the rat hippocampus. Brust TB; Cayabyab FS; MacVicar BA Neuropharmacology; 2007 Dec; 53(8):906-17. PubMed ID: 17967469 [TBL] [Abstract][Full Text] [Related]
19. Early adenosine release contributes to hypoxia-induced disruption of stimulus-induced sharp wave-ripple complexes in rat hippocampal area CA3. Jarosch MS; Gebhardt C; Fano S; Huchzermeyer C; Ul Haq R; Behrens CJ; Heinemann U Eur J Neurosci; 2015 Jul; 42(2):1808-17. PubMed ID: 25959377 [TBL] [Abstract][Full Text] [Related]
20. Brief, repeated, oxygen-glucose deprivation episodes protect neurotransmission from a longer ischemic episode in the in vitro hippocampus: role of adenosine receptors. Pugliese AM; Latini S; Corradetti R; Pedata F Br J Pharmacol; 2003 Sep; 140(2):305-14. PubMed ID: 12970092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]