BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29135239)

  • 1. Advances in Sulfidation of Zerovalent Iron for Water Decontamination.
    Li J; Zhang X; Sun Y; Liang L; Pan B; Zhang W; Guan X
    Environ Sci Technol; 2017 Dec; 51(23):13533-13544. PubMed ID: 29135239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Sulfidated Zerovalent Iron for Contaminant Transformation.
    Garcia AN; Zhang Y; Ghoshal S; He F; O'Carroll DM
    Environ Sci Technol; 2021 Jul; 55(13):8464-8483. PubMed ID: 34170112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Reactivity and Electron Selectivity of Sulfidated Zerovalent Iron toward Chromate under Aerobic Conditions.
    Li J; Zhang X; Liu M; Pan B; Zhang W; Shi Z; Guan X
    Environ Sci Technol; 2018 Mar; 52(5):2988-2997. PubMed ID: 29446929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Sulfidation and Nitrate on the Reduction of
    Qin H; Guan X; Tratnyek PG
    Environ Sci Technol; 2019 Aug; 53(16):9744-9754. PubMed ID: 31343874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfidation of zerovalent iron for improving the selectivity toward Cr(VI) in oxic water: Involvements of FeS
    Li H; Zhang J; Gu K; Li J
    J Hazard Mater; 2021 May; 409():124498. PubMed ID: 33250310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled Effect of Sulfidation and Ferrous Dosing on Selenate Removal by Zerovalent Iron Under Aerobic Conditions.
    Fan P; Sun Y; Zhou B; Guan X
    Environ Sci Technol; 2019 Dec; 53(24):14577-14585. PubMed ID: 31743007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanochemically Sulfidated Microscale Zero Valent Iron: Pathways, Kinetics, Mechanism, and Efficiency of Trichloroethylene Dechlorination.
    Gu Y; Wang B; He F; Bradley MJ; Tratnyek PG
    Environ Sci Technol; 2017 Nov; 51(21):12653-12662. PubMed ID: 28984446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfidation of ZVI/AC composite leads to highly corrosion-resistant nanoremediation particles with extended life-time.
    Vogel M; Georgi A; Kopinke FD; Mackenzie K
    Sci Total Environ; 2019 May; 665():235-245. PubMed ID: 30772554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron.
    Rajajayavel SR; Ghoshal S
    Water Res; 2015 Jul; 78():144-53. PubMed ID: 25935369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic Effects of Sulfidation on the Reactivity of Zero-Valent Iron With Trichloroethene: A DFT Study.
    Brumovský M; Tunega D
    J Phys Chem C Nanomater Interfaces; 2023 Nov; 127(43):21063-21074. PubMed ID: 37937157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Copresence of Zerovalent Iron and Sulfate Reducing Bacteria on Reductive Dechlorination of Trichloroethylene.
    Islam S; Redwan A; Millerick K; Filip J; Fan L; Yan W
    Environ Sci Technol; 2021 Apr; 55(8):4851-4861. PubMed ID: 33787255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfidation of Iron-Based Materials: A Review of Processes and Implications for Water Treatment and Remediation.
    Fan D; Lan Y; Tratnyek PG; Johnson RL; Filip J; O'Carroll DM; Nunez Garcia A; Agrawal A
    Environ Sci Technol; 2017 Nov; 51(22):13070-13085. PubMed ID: 29035566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenate removal by Fe
    Fan P; Li L; Sun Y; Qiao J; Xu C; Guan X
    Water Res; 2019 Aug; 159():375-384. PubMed ID: 31121405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of zerovalent iron nanoparticles for remediation of environmental organic contaminants in water: a review.
    Raychoudhury T; Scheytt T
    Water Sci Technol; 2013; 68(7):1425-39. PubMed ID: 24135090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept.
    Phenrat T; Thongboot T; Lowry GV
    Environ Sci Technol; 2016 Jan; 50(2):872-80. PubMed ID: 26654836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014).
    Guan X; Sun Y; Qin H; Li J; Lo IM; He D; Dong H
    Water Res; 2015 May; 75():224-48. PubMed ID: 25770444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic interactions between sulfidated zerovalent iron and dissolved oxygen: Mechanistic insights for enhanced chromate removal.
    Shao Q; Xu C; Wang Y; Huang S; Zhang B; Huang L; Fan D; Tratnyek PG
    Water Res; 2018 May; 135():322-330. PubMed ID: 29486382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfidation of Zero-Valent Iron by Direct Reaction with Elemental Sulfur in Water: Efficiencies, Mechanism, and Dechlorination of Trichloroethylene.
    Cai S; Chen B; Qiu X; Li J; Tratnyek PG; He F
    Environ Sci Technol; 2021 Jan; 55(1):645-654. PubMed ID: 33302625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyl Radical-Involving
    Tian X; Wang X; Nie Y; Yang C; Dionysiou DD
    Environ Sci Technol; 2021 Feb; 55(4):2403-2410. PubMed ID: 33543936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of Chloroform by Zerovalent Iron: Effects of Mechanochemical Sulfidation and Nitridation on the Kinetics and Mechanism.
    Gong L; Chen J; Hu Y; He K; Bylaska EJ; Tratnyek PG; He F
    Environ Sci Technol; 2023 Jul; 57(26):9811-9821. PubMed ID: 37339398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.