BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 29135243)

  • 1. Foams Stabilized by β-Lactoglobulin Amyloid Fibrils: Effect of pH.
    Peng D; Yang J; Li J; Tang C; Li B
    J Agric Food Chem; 2017 Dec; 65(48):10658-10665. PubMed ID: 29135243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous control of pH and ionic strength during interfacial rheology of β-lactoglobulin fibrils adsorbed at liquid/liquid Interfaces.
    Rühs PA; Scheuble N; Windhab EJ; Mezzenga R; Fischer P
    Langmuir; 2012 Aug; 28(34):12536-43. PubMed ID: 22857147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of time on the interfacial and foaming properties of beta-lactoglobulin/acacia gum electrostatic complexes and coacervates at pH 4.2.
    Schmitt C; da Silva TP; Bovay C; Rami-Shojaei S; Frossard P; Kolodziejczyk E; Leser ME
    Langmuir; 2005 Aug; 21(17):7786-95. PubMed ID: 16089384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study on foaming and emulsifying properties of different beta-lactoglobulin aggregates.
    Hu J; Yang J; Xu Y; Zhang K; Nishinari K; Phillips GO; Fang Y
    Food Funct; 2019 Sep; 10(9):5922-5930. PubMed ID: 31469143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of temperature and high pressure on the foaming properties of beta-lactoglobulin salted out at pH 2.
    Leman J; Doga T
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt B):489-92. PubMed ID: 24757793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High pressure effect on foaming properties of beta-lactoglobulin and dextran sulfate mixture.
    Ibanoglu E
    Nahrung; 2001 Oct; 45(5):342-6. PubMed ID: 11715346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH effects on the molecular structure of β-lactoglobulin modified air-water interfaces and its impact on foam rheology.
    Engelhardt K; Lexis M; Gochev G; Konnerth C; Miller R; Willenbacher N; Peukert W; Braunschweig B
    Langmuir; 2013 Sep; 29(37):11646-55. PubMed ID: 23961700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foaming and adsorption behavior of bovine and camel proteins mixed layers at the air/water interface.
    Lajnaf R; Picart-Palmade L; Attia H; Marchesseau S; Ayadi MA
    Colloids Surf B Biointerfaces; 2017 Mar; 151():287-294. PubMed ID: 28038415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial and foaming properties of sulfydryl-modified bovine beta-lactoglobulin.
    Croguennec T; Renault A; Bouhallab S; Pezennec S
    J Colloid Interface Sci; 2006 Oct; 302(1):32-9. PubMed ID: 16876179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational state and charge determine the interfacial stabilization process of beta-lactoglobulin at preoccupied interfaces.
    Schestkowa H; Wollborn T; Westphal A; Maria Wagemans A; Fritsching U; Drusch S
    J Colloid Interface Sci; 2019 Feb; 536():300-309. PubMed ID: 30380430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.
    Dan A; Gochev G; Miller R
    J Colloid Interface Sci; 2015 Jul; 449():383-91. PubMed ID: 25666640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between β-lactoglobulin and casein glycomacropeptide on foaming.
    Martinez MJ; Sánchez CC; Patino JM; Pilosof AM
    Colloids Surf B Biointerfaces; 2012 Jan; 89():234-41. PubMed ID: 21968098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural-rheological characteristics of Chaplin E peptide at the air/water interface; a comparison with β-lactoglobulin and β-casein.
    Dokouhaki M; Prime EL; Qiao GG; Kasapis S; Day L; Gras SL
    Int J Biol Macromol; 2020 Feb; 144():742-750. PubMed ID: 31837361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of electrolyte concentration and pH on the coalescence stability of beta-lactoglobulin emulsions: experiment and interpretation.
    Tcholakova S; Denkov ND; Sidzhakova D; Ivanov IB; Campbell B
    Langmuir; 2005 May; 21(11):4842-55. PubMed ID: 15896022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH and ionic strength on competitive protein adsorption to air/water interfaces in aqueous foams made with mixed milk proteins.
    Zhang Z; Dalgleish DG; Goff HD
    Colloids Surf B Biointerfaces; 2004 Mar; 34(2):113-21. PubMed ID: 15261081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of viscoelastic beta-lactoglobulin surface layers at the air-water interface by nonionic polymeric surfactants.
    Rippner Blomqvist B; Ridout MJ; Mackie AR; Wärnheim T; Claesson PM; Wilde P
    Langmuir; 2004 Nov; 20(23):10150-8. PubMed ID: 15518507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregation across the length-scales in beta-lactoglobulin.
    Bromley EH; Krebs MR; Donald AM
    Faraday Discuss; 2005; 128():13-27. PubMed ID: 15658764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of disproportionation of air bubbles beneath a planar air-water interface stabilized by food proteins.
    Dickinson E; Ettelaie R; Murray BS; Du Z
    J Colloid Interface Sci; 2002 Aug; 252(1):202-13. PubMed ID: 16290780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of thermal treatment, ionic strength, and pH on the short-term and long-term coalescence stability of beta-lactoglobulin emulsions.
    Tcholakova S; Denkov ND; Sidzhakova D; Campbell B
    Langmuir; 2006 Jul; 22(14):6042-52. PubMed ID: 16800657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.