BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29135323)

  • 1. Impact assessment of the rational selection of training and test sets on the predictive ability of QSAR models.
    Andrada MF; Vega-Hissi EG; Estrada MR; Garro Martinez JC
    SAR QSAR Environ Res; 2017 Dec; 28(12):1011-1023. PubMed ID: 29135323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does rational selection of training and test sets improve the outcome of QSAR modeling?
    Martin TM; Harten P; Young DM; Muratov EN; Golbraikh A; Zhu H; Tropsha A
    J Chem Inf Model; 2012 Oct; 52(10):2570-8. PubMed ID: 23030316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm.
    Algamal ZY; Qasim MK; Lee MH; Ali HTM
    SAR QSAR Environ Res; 2020 Nov; 31(11):803-814. PubMed ID: 32938208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robust quantitative structure-activity relationship modelling of influenza neuraminidase a/PR/8/34 (H1N1) inhibitors based on the rank-bridge estimator.
    Al-Dabbagh ZT; Algamal ZY
    SAR QSAR Environ Res; 2019 Jun; 30(6):417-428. PubMed ID: 31122071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational selection of training and test sets for the development of validated QSAR models.
    Golbraikh A; Shen M; Xiao Z; Xiao YD; Lee KH; Tropsha A
    J Comput Aided Mol Des; 2003; 17(2-4):241-53. PubMed ID: 13677490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PV
    Dong Y; Xiang B; Du D
    J Chem Inf Model; 2017 May; 57(5):1055-1067. PubMed ID: 28419798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragment-based quantitative structure-activity relationship (FB-QSAR) for fragment-based drug design.
    Du QS; Huang RB; Wei YT; Pang ZW; Du LQ; Chou KC
    J Comput Chem; 2009 Jan; 30(2):295-304. PubMed ID: 18613071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D QSAR and docking study of flavone derivatives as potent inhibitors of influenza H1N1 virus neuraminidase.
    Gao L; Zu M; Wu S; Liu AL; Du GH
    Bioorg Med Chem Lett; 2011 Oct; 21(19):5964-70. PubMed ID: 21843936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection.
    Golbraikh A; Tropsha A
    J Comput Aided Mol Des; 2002; 16(5-6):357-69. PubMed ID: 12489684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection.
    Golbraikh A; Tropsha A
    Mol Divers; 2002; 5(4):231-43. PubMed ID: 12549674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR study of flavonoids and biflavonoids as influenza H1N1 virus neuraminidase inhibitors.
    Mercader AG; Pomilio AB
    Eur J Med Chem; 2010 May; 45(5):1724-30. PubMed ID: 20116898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) for inhibitor design.
    Du QS; Gao J; Wei YT; Du LQ; Wang SQ; Huang RB
    J Chem Inf Model; 2012 Apr; 52(4):996-1004. PubMed ID: 22480344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A QSAR classification model for neuraminidase inhibitors of influenza A viruses (H1N1) based on weighted penalized support vector machine.
    Algamal ZY; Qasim MK; Ali HTM
    SAR QSAR Environ Res; 2017 May; 28(5):415-426. PubMed ID: 28539063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A binary QSAR model for classifying neuraminidase inhibitors of influenza A viruses (H1N1) using the combined minimum redundancy maximum relevancy criterion with the sparse support vector machine.
    Qasim MK; Algamal ZY; Ali HTM
    SAR QSAR Environ Res; 2018 Jul; 29(7):517-527. PubMed ID: 30037283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple field three dimensional quantitative structure-activity relationship (MF-3D-QSAR).
    Du QS; Huang RB; Wei YT; Du LQ; Chou KC
    J Comput Chem; 2008 Jan; 29(2):211-9. PubMed ID: 17559075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacophore modeling, quantitative structure-activity relationship analysis, and shape-complemented in silico screening allow access to novel influenza neuraminidase inhibitors.
    Abu Hammad AM; Taha MO
    J Chem Inf Model; 2009 Apr; 49(4):978-96. PubMed ID: 19341295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On three-dimensional holographic vector of atomic interaction field analysis for influenza neuraminidase inhibitors.
    Li ZS; Sun JY; Liang GZ; Lu FL; Zhu WP; Zhang MJ; Zhang Y; Yang SB; Shu M; Chen GH; Lu TT
    Chem Biol Drug Des; 2009 Feb; 73(2):236-43. PubMed ID: 19207426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling and structure-activity relationship of podophyllotoxin and its congeners.
    Naik PK; Alam A; Malhotra A; Rizvi O
    J Biomol Screen; 2010 Jun; 15(5):528-40. PubMed ID: 20460251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Docking and 3D QSAR study of thiourea analogs as potent inhibitors of influenza virus neuraminidase.
    Sun J; Cai S; Mei H; Li J; Yan N; Wang Y
    J Mol Model; 2010 Dec; 16(12):1809-18. PubMed ID: 20213331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.