BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

578 related articles for article (PubMed ID: 29135450)

  • 21. Efficient noise-tolerant estimation of heart rate variability using single-channel photoplethysmography.
    Firoozabadi R; Helfenbein ED; Babaeizadeh S
    J Electrocardiol; 2017; 50(6):841-846. PubMed ID: 28918214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of Pulse Rate Variability and Heart Rate Variability for Hypoglycemia Syndrome.
    Okkesim Ş; Çelik G; Yıldırım MS; İlhan MM; Karaman Ö; Taşan E; Kara S
    Methods Inf Med; 2016 May; 55(3):250-7. PubMed ID: 27063926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.
    Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW
    Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Video-Based Pulse Rate Variability Measurement Using Periodic Variance Maximization and Adaptive Two-Window Peak Detection.
    Li P; Benezeth Y; Macwan R; Nakamura K; Gomez R; Li C; Yang F
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32408526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Ambient Lighting and Skin Tone on Estimation of Heart Rate and Pulse Transit Time from Video Plethysmography.
    Shirbani F; Hui N; Tan I; Butlin M; Avolio AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2642-2645. PubMed ID: 33018549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features.
    Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contactless Heart Rate Variability (HRV) Estimation Using a Smartphone During Respiratory Maneuvers and Body Movement.
    Shoushan MM; Alexander Reyes B; Rodriguez AM; Woon Chong J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():84-87. PubMed ID: 34891245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Remote Photoplethysmography and Heart Rate Estimation by Dynamic Region of Interest Tracking.
    Wei W; Vatanparvar K; Zhu L; Kuang J; Gao A
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3243-3248. PubMed ID: 36085962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-Time Evaluation of Time-Domain Pulse Rate Variability Parameters in Different Postures and Breathing Patterns Using Wireless Photoplethysmography Sensor: Towards Remote Healthcare in Low-Resource Communities.
    Pineda-Alpizar F; Arriola-Valverde S; Vado-Chacón M; Sossa-Rojas D; Liu H; Zheng D
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-Contact Physiological Parameters Extraction Using Facial Video Considering Illumination, Motion, Movement and Vibration.
    Rahman H; Ahmed MU; Begum S
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):88-98. PubMed ID: 31095471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extraction of heart rate variability from smartphone photoplethysmograms.
    Peng RC; Zhou XL; Lin WH; Zhang YT
    Comput Math Methods Med; 2015; 2015():516826. PubMed ID: 25685174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wireless photoplethysmographic device for heart rate variability signal acquisition and analysis.
    Reyes I; Nazeran H; Franco M; Haltiwanger E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2092-5. PubMed ID: 23366333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Processing Photoplethysmograms Recorded by Smartwatches to Improve the Quality of Derived Pulse Rate Variability.
    Polak AG; Klich B; Saganowski S; Prucnal MA; Kazienko P
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Statistical analysis of heart rate and heart rate variability monitoring through the use of smart phone cameras.
    Bolkhovsky JB; Scully CG; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1610-3. PubMed ID: 23366214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vision-Based Measurement of Heart Rate from Ballistocardiographic Head Movements Using Unsupervised Clustering.
    Lee H; Cho A; Lee S; Whang M
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31344939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectral analysis for pulse rate variability assessment from simulated photoplethysmographic signals.
    Mejía-Mejía E; Kyriacou PA
    Front Physiol; 2022; 13():966130. PubMed ID: 36569750
    [No Abstract]   [Full Text] [Related]  

  • 37. Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals.
    Bolanos M; Nazeran H; Haltiwanger E
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4289-94. PubMed ID: 17946618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measuring pulse rate variability using long-range, non-contact imaging photoplethysmography.
    Blackford EB; Piasecki AM; Estepp JR
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3930-3936. PubMed ID: 28269145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison between heart rate variability and pulse rate variability during different sleep stages for sleep apnea patients.
    Liu S; Teng J; Qi X; Wei S; Liu C
    Technol Health Care; 2017; 25(3):435-445. PubMed ID: 27911348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fusing Partial Camera Signals for Noncontact Pulse Rate Variability Measurement.
    McDuff DJ; Blackford EB; Estepp JR
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1725-1739. PubMed ID: 29989930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.