These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29136165)

  • 1. Low-dose electron energy-loss spectroscopy using electron counting direct detectors.
    Maigné A; Wolf M
    Microscopy (Oxf); 2018 Mar; 67(suppl_1):i86-i97. PubMed ID: 29136165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of detection limits of direct-counting CMOS and CCD cameras in EELS experiments.
    Haruta M; Kikkawa J; Kimoto K; Kurata H
    Ultramicroscopy; 2022 Oct; 240():113577. PubMed ID: 35728341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of low phosphorus contents in neurofilaments of squid axons by Image-EELS contrast spectroscopy.
    Door R; Richter K; Martin R
    J Microsc; 1997 Nov; 188(Pt 2):173-81. PubMed ID: 10627190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-sensitivity CCD system for parallel electron energy-loss spectroscopy (CCD for EELS).
    Tang Z; Ho R; Xu Z; Shao Z; Somlyo AP
    J Microsc; 1994 Aug; 175(Pt 2):100-7. PubMed ID: 7966250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The performance evaluation of direct detection electron energy-loss spectroscopy at 200 kV and 80 kV accelerating voltages.
    Cheng S; Pofelski A; Longo P; Twesten RD; Zhu Y; Botton GA
    Ultramicroscopy; 2020 May; 212():112942. PubMed ID: 32114314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benefits of direct electron detection and PCA for EELS investigation of organic photovoltaics materials.
    Haberfehlner G; Hoefler SF; Rath T; Trimmel G; Kothleitner G; Hofer F
    Micron; 2021 Jan; 140():102981. PubMed ID: 33202362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron energy loss spectroscopy database synthesis and automation of core-loss edge recognition by deep-learning neural networks.
    Kong L; Ji Z; Xin HL
    Sci Rep; 2022 Dec; 12(1):22183. PubMed ID: 36564412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid pixel direct detector for electron energy loss spectroscopy.
    Plotkin-Swing B; Corbin GJ; De Carlo S; Dellby N; Hoermann C; Hoffman MV; Lovejoy TC; Meyer CE; Mittelberger A; Pantelic R; Piazza L; Krivanek OL
    Ultramicroscopy; 2020 Oct; 217():113067. PubMed ID: 32801089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating direct detection detectors for short-range order characterization of amorphous materials by electron scattering.
    Basha A; Levi G; Houben L; Amrani T; Goldfarb I; Kohn A
    Ultramicroscopy; 2023 Jul; 249():113737. PubMed ID: 37037087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity.
    Hart JL; Lang AC; Leff AC; Longo P; Trevor C; Twesten RD; Taheri ML
    Sci Rep; 2017 Aug; 7(1):8243. PubMed ID: 28811485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of quantitative electron energy loss spectroscopy in the low loss region: phosphorus L-edge.
    Wang YY; Ho R; Shao Z; Somlyo AP
    Ultramicroscopy; 1992; 41(1-3):11-31. PubMed ID: 1641912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in EELS spectroscopy by using new detector and new specimen preparation technologies.
    Scheu C; Gao M; Van Benthem K; Tsukimoto S; Schmidt S; Sigle W; Richter G; Thomas J
    J Microsc; 2003 Apr; 210(Pt 1):16-24. PubMed ID: 12694412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards atomically resolved EELS elemental and fine structure mapping via multi-frame and energy-offset correction spectroscopy.
    Wang Y; Huang MRS; Salzberger U; Hahn K; Sigle W; van Aken PA
    Ultramicroscopy; 2018 Jan; 184(Pt B):98-105. PubMed ID: 29102829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron energy loss spectroscopy of polytetrafluoroethylene: experiment and first principles calculations.
    Wang C; Duscher G; Paddison SJ
    Microscopy (Oxf); 2014 Feb; 63(1):73-83. PubMed ID: 24296695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron energy-loss near-edge structures of 3d transition metal oxides recorded at high-energy resolution.
    Mitterbauer C; Kothleitner G; Grogger W; Zandbergen H; Freitag B; Tiemeijer P; Hofer F
    Ultramicroscopy; 2003 Sep; 96(3-4):469-80. PubMed ID: 12871809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measured and calculated K-fluorescence effects on the MTF of an amorphous-selenium based CCD x-ray detector.
    Hunter DM; Belev G; Kasap S; Yaffe MJ
    Med Phys; 2012 Feb; 39(2):608-22. PubMed ID: 22320770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing EELS acquisition.
    Bosman M; Keast VJ
    Ultramicroscopy; 2008 Aug; 108(9):837-46. PubMed ID: 18375066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of electron dose rate on electron counting images recorded with the K2 camera.
    Li X; Zheng SQ; Egami K; Agard DA; Cheng Y
    J Struct Biol; 2013 Nov; 184(2):251-60. PubMed ID: 23968652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the chemical structure in diamond-based materials using combined low-loss and core-loss electron energy-loss spectroscopy.
    Longo P; Twesten RD; Olivier J
    Microsc Microanal; 2014 Jun; 20(3):779-83. PubMed ID: 24666478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin and Suppression of Beam Damage-Induced Oxygen-K Edge Artifact from γ-Al
    Ayoola HO; Li CH; House SD; Bonifacio CS; Kisslinger K; Jinschek J; Saidi WA; Yang JC
    Ultramicroscopy; 2020 Dec; 219():113127. PubMed ID: 33059174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.