BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 29136175)

  • 1. Structural basis of effector and operator recognition by the phenolic acid-responsive transcriptional regulator PadR.
    Park SC; Kwak YM; Song WS; Hong M; Yoon SI
    Nucleic Acids Res; 2017 Dec; 45(22):13080-13093. PubMed ID: 29136175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the VanR transcription factor and the role of its unique α-helix in effector recognition.
    Kwak YM; Park SC; Na HW; Kang SG; Lee GS; Ko HJ; Kim PH; Oh BC; Yoon SI
    FEBS J; 2018 Oct; 285(20):3786-3800. PubMed ID: 30095229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apo structure of the transcriptional regulator PadR from Bacillus subtilis: Structural dynamics and conserved Y70 residue.
    Park SC; Song WS; Yoon SI
    Biochem Biophys Res Commun; 2020 Sep; 530(1):215-221. PubMed ID: 32828288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based functional analysis of a PadR transcription factor from Streptococcus pneumoniae and characteristic features in the PadR subfamily-2.
    Lee C; Kim MI; Park J; Oh H; Kim J; Hong J; Jeon BY; Ka H; Hong M
    Biochem Biophys Res Commun; 2020 Nov; 532(2):251-257. PubMed ID: 32868077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and DNA-binding studies of the PadR-like transcriptional regulator BC1756 from Bacillus cereus.
    Kim TH; Park SC; Lee KC; Song WS; Yoon SI
    Biochem Biophys Res Commun; 2019 Aug; 515(4):607-613. PubMed ID: 31178139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenolic acid-mediated regulation of the padC gene, encoding the phenolic acid decarboxylase of Bacillus subtilis.
    Tran NP; Gury J; Dartois V; Nguyen TK; Seraut H; Barthelmebs L; Gervais P; Cavin JF
    J Bacteriol; 2008 May; 190(9):3213-24. PubMed ID: 18326577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional analysis of BF2549, a PadR-like transcription factor from Bacteroides fragilis.
    Lee C; Kim MI; Hong M
    Biochem Biophys Res Commun; 2017 Jan; 483(1):264-270. PubMed ID: 28027933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The purine repressor of Bacillus subtilis: a novel combination of domains adapted for transcription regulation.
    Sinha SC; Krahn J; Shin BS; Tomchick DR; Zalkin H; Smith JL
    J Bacteriol; 2003 Jul; 185(14):4087-98. PubMed ID: 12837783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and biochemical analysis of PadR-padC promoter interactions during the phenolic acid stress response in Bacillus subtilis 168.
    Nguyen TK; Tran NP; Cavin JF
    J Bacteriol; 2011 Aug; 193(16):4180-91. PubMed ID: 21685295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of the arginine repressor-operator complex from Bacillus subtilis.
    Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE
    J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional domains of the Bacillus subtilis transcription factor AraR and identification of amino acids important for nucleoprotein complex assembly and effector binding.
    Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I
    J Bacteriol; 2006 Apr; 188(8):3024-36. PubMed ID: 16585763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure and DNA binding activity of a PadR family transcription regulator from hypervirulent Clostridium difficile R20291.
    Isom CE; Menon SK; Thomas LM; West AH; Richter-Addo GB; Karr EA
    BMC Microbiol; 2016 Oct; 16(1):231. PubMed ID: 27716049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric control of transcription in GntR family of transcription regulators: A structural overview.
    Jain D
    IUBMB Life; 2015 Jul; 67(7):556-63. PubMed ID: 26172911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based molecular characterization and regulatory mechanism of the LftR transcription factor from Listeria monocytogenes: Conformational flexibilities and a ligand-induced regulatory mechanism.
    Lee C; Kim MI; Park J; Hong M
    PLoS One; 2019; 14(4):e0215017. PubMed ID: 30970033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional characterization of the transcriptional regulator Rv3488 of
    Kumari M; Pal RK; Mishra AK; Tripathi S; Biswal BK; Srivastava KK; Arora A
    Biochem J; 2018 Nov; 475(21):3393-3416. PubMed ID: 30266832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator.
    Ezezika OC; Haddad S; Clark TJ; Neidle EL; Momany C
    J Mol Biol; 2007 Mar; 367(3):616-29. PubMed ID: 17291527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning, deletion, and characterization of PadR, the transcriptional repressor of the phenolic acid decarboxylase-encoding padA gene of Lactobacillus plantarum.
    Gury J; Barthelmebs L; Tran NP; Diviès C; Cavin JF
    Appl Environ Microbiol; 2004 Apr; 70(4):2146-53. PubMed ID: 15066807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of the essential pathogenicity factor Rv1828, a MerR family transcription regulator from Mycobacterium tuberculosis.
    Singh S; Sevalkar RR; Sarkar D; Karthikeyan S
    FEBS J; 2018 Dec; 285(23):4424-4444. PubMed ID: 30306715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon.
    Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I
    Nucleic Acids Res; 2007; 35(14):4755-66. PubMed ID: 17617643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two regions of Bacillus subtilis transcription factor SpoIIID allow a monomer to bind DNA.
    Himes P; McBryant SJ; Kroos L
    J Bacteriol; 2010 Mar; 192(6):1596-606. PubMed ID: 20061473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.