BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29136243)

  • 1. Structure and electrical properties of DNA nanotubes embedded in lipid bilayer membranes.
    Joshi H; Maiti PK
    Nucleic Acids Res; 2018 Mar; 46(5):2234-2242. PubMed ID: 29136243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability and dynamics of membrane-spanning DNA nanopores.
    Maingi V; Burns JR; Uusitalo JJ; Howorka S; Marrink SJ; Sansom MS
    Nat Commun; 2017 Mar; 8():14784. PubMed ID: 28317903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gating-like Motions and Wall Porosity in a DNA Nanopore Scaffold Revealed by Molecular Simulations.
    Maingi V; Lelimousin M; Howorka S; Sansom MS
    ACS Nano; 2015 Nov; 9(11):11209-17. PubMed ID: 26506011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid Bilayer Membrane Perturbation by Embedded Nanopores: A Simulation Study.
    Garcia-Fandiño R; Piñeiro Á; Trick JL; Sansom MS
    ACS Nano; 2016 Mar; 10(3):3693-701. PubMed ID: 26943498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of lipid electropores I: Molecular dynamics simulations of stabilized pores by constant charge imbalance.
    Casciola M; Kasimova MA; Rems L; Zullino S; Apollonio F; Tarek M
    Bioelectrochemistry; 2016 Jun; 109():108-16. PubMed ID: 26883056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion of energetic compounds through biological membrane: Application of classical MD and COSMOmic approximations.
    Golius A; Gorb L; Isayev O; Leszczynski J
    J Biomol Struct Dyn; 2019 Jan; 37(1):247-255. PubMed ID: 29301457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bilayer-spanning DNA nanopores with voltage-switching between open and closed state.
    Seifert A; Göpfrich K; Burns JR; Fertig N; Keyser UF; Howorka S
    ACS Nano; 2015 Feb; 9(2):1117-26. PubMed ID: 25338165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide nanopores and lipid bilayers: interactions by coarse-grained molecular-dynamics simulations.
    Klingelhoefer JW; Carpenter T; Sansom MS
    Biophys J; 2009 May; 96(9):3519-28. PubMed ID: 19413958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of MscL gating in a bilayer under stress.
    Colombo G; Marrink SJ; Mark AE
    Biophys J; 2003 Apr; 84(4):2331-7. PubMed ID: 12668441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing DNA-lipid membrane interactions with a lipopeptide nanopore.
    Bessonov A; Takemoto JY; Simmel FC
    ACS Nano; 2012 Apr; 6(4):3356-63. PubMed ID: 22424398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamic simulation of transmembrane pore growth.
    Deminsky M; Eletskii A; Kniznik A; Odinokov A; Pentkovskii V; Potapkin B
    J Membr Biol; 2013 Nov; 246(11):821-31. PubMed ID: 23660813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forming transmembrane channels using end-functionalized nanotubes.
    Dutt M; Kuksenok O; Little SR; Balazs AC
    Nanoscale; 2011 Jan; 3(1):240-50. PubMed ID: 20976358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a carane derivative local anesthetic on a phospholipid bilayer studied by molecular dynamics simulation.
    Pasenkiewicz-Gierula M; Róg T; Grochowski J; Serda P; Czarnecki R; Librowski T; Lochyński S
    Biophys J; 2003 Aug; 85(2):1248-58. PubMed ID: 12885668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H-13C NMR and MD simulation studies.
    Ferreira TM; Coreta-Gomes F; Ollila OH; Moreno MJ; Vaz WL; Topgaard D
    Phys Chem Chem Phys; 2013 Feb; 15(6):1976-89. PubMed ID: 23258433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane Interactions of hIAPP Monomer and Oligomer with Lipid Membranes by Molecular Dynamics Simulations.
    Zhang M; Ren B; Liu Y; Liang G; Sun Y; Xu L; Zheng J
    ACS Chem Neurosci; 2017 Aug; 8(8):1789-1800. PubMed ID: 28585804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Yeast Organelle Membranes and How Lipid Diversity Influences Bilayer Properties.
    Monje-Galvan V; Klauda JB
    Biochemistry; 2015 Nov; 54(45):6852-61. PubMed ID: 26497753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of the interactions between the first transmembrane segment of NS2 protein and a POPC lipid bilayer.
    Hung HM; Nguyen VP; Ngo ST; Nguyen MT
    Biophys Chem; 2016 Oct; 217():1-7. PubMed ID: 27455027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroporation threshold of POPC lipid bilayers with incorporated polyoxyethylene glycol (C12E8).
    Polak A; Velikonja A; Kramar P; Tarek M; Miklavčič D
    J Phys Chem B; 2015 Jan; 119(1):192-200. PubMed ID: 25495217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.