These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29136313)

  • 1. In Situ Scatheless Cell Detachment Reveals Correlation between Adhesion Strength and Viability at Single-Cell Resolution.
    Mao S; Zhang W; Huang Q; Khan M; Li H; Uchiyama K; Lin JM
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):236-240. PubMed ID: 29136313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Evaluation Approach of Cell Viability Based on Cell Detachment Assay in a Single-Channel Integrated Microfluidic Chip.
    Wei M; Zhang R; Zhang F; Zhang Y; Li G; Miao R; Shao S
    ACS Sens; 2019 Oct; 4(10):2654-2661. PubMed ID: 31502455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of Cell-Matrix Adhesion at Single-Cell Resolution for Revealing the Functions of Biomaterials for Adherent Cell Culture.
    Mao S; Zhang Q; Li H; Huang Q; Khan M; Uchiyama K; Lin JM
    Anal Chem; 2018 Aug; 90(15):9637-9643. PubMed ID: 30016872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics.
    Chen W; Allen SG; Reka AK; Qian W; Han S; Zhao J; Bao L; Keshamouni VG; Merajver SD; Fu J
    BMC Cancer; 2016 Aug; 16():614. PubMed ID: 27501846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip.
    Hultström J; Manneberg O; Dopf K; Hertz HM; Brismar H; Wiklund M
    Ultrasound Med Biol; 2007 Jan; 33(1):145-51. PubMed ID: 17189057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofunctionalization of electrowetting-on-dielectric digital microfluidic chips for miniaturized cell-based applications.
    Witters D; Vergauwe N; Vermeir S; Ceyssens F; Liekens S; Puers R; Lammertyn J
    Lab Chip; 2011 Aug; 11(16):2790-4. PubMed ID: 21720645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Application of microfluidic chips in cellular microenvironment].
    Lu S; Cal S; Jiang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):675-9. PubMed ID: 20649042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontier microfluidic techniques for short and long-term single cell analysis.
    Avesar J; Arye TB; Levenberg S
    Lab Chip; 2014 Jul; 14(13):2161-7. PubMed ID: 24671389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Cell Adhesion Studies for Biomedical and Biological Applications.
    Khalili AA; Ahmad MR
    Int J Mol Sci; 2015 Aug; 16(8):18149-84. PubMed ID: 26251901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inkjet-Patterned Microdroplets as Individual Microenvironments for Adherent Single Cell Culture.
    Xie T; Zhang Q; Zhang W; Feng S; Lin JM
    Small; 2022 May; 18(19):e2107992. PubMed ID: 35362237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic systems for live cell imaging.
    Lee P; Gaige T; Hung P
    Methods Cell Biol; 2011; 102():77-103. PubMed ID: 21704836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative comparison between microfluidic and microtiter plate formats for cell-based assays.
    Yin H; Pattrick N; Zhang X; Klauke N; Cordingley HC; Haswell SJ; Cooper JM
    Anal Chem; 2008 Jan; 80(1):179-85. PubMed ID: 18052343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell enzyme-free dissociation of neurospheres using a microfluidic chip.
    Lin CH; Lee DC; Chang HC; Chiu IM; Hsu CH
    Anal Chem; 2013 Dec; 85(24):11920-8. PubMed ID: 24228937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Microfluidics Applied to Single Cell Operation.
    Zhu XD; Chu J; Wang YH
    Biotechnol J; 2018 Feb; 13(2):. PubMed ID: 29220116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network.
    Kim C; Bang JH; Kim YE; Lee SH; Kang JY
    Lab Chip; 2012 Oct; 12(20):4135-42. PubMed ID: 22864534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A practical guide to microfluidic perfusion culture of adherent mammalian cells.
    Kim L; Toh YC; Voldman J; Yu H
    Lab Chip; 2007 Jun; 7(6):681-94. PubMed ID: 17538709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems.
    Pappas D
    Analyst; 2016 Jan; 141(2):525-35. PubMed ID: 26579548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices.
    Didar TF; Tabrizian M
    Lab Chip; 2010 Nov; 10(22):3043-53. PubMed ID: 20877893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chemical signal generator for resolving temporal dynamics of single cells.
    Sun J; Wang J; Chen P; Feng X; Du W; Liu BF
    Anal Bioanal Chem; 2011 Jul; 400(9):2973-81. PubMed ID: 21499676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Proximity Ligation Assay for Profiling Signaling Networks with Single-Cell Resolution.
    Blazek M; Roth G; Zengerle R; Meier M
    Methods Mol Biol; 2015; 1346():169-84. PubMed ID: 26542722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.