BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 29136337)

  • 1. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts.
    Wang H; Wang H; Kuhn E; Tucker MP; Yang B
    ChemSusChem; 2018 Jan; 11(1):285-291. PubMed ID: 29136337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-Pot Process for Hydrodeoxygenation of Lignin to Alkanes Using Ru-Based Bimetallic and Bifunctional Catalysts Supported on Zeolite Y.
    Wang H; Ruan H; Feng M; Qin Y; Job H; Luo L; Wang C; Engelhard MH; Kuhn E; Chen X; Tucker MP; Yang B
    ChemSusChem; 2017 Apr; 10(8):1846-1856. PubMed ID: 28225212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.
    Mu W; Ben H; Du X; Zhang X; Hu F; Liu W; Ragauskas AJ; Deng Y
    Bioresour Technol; 2014 Dec; 173():6-10. PubMed ID: 25280108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Sugars, Furans, and their Derivatives on Hydrodeoxygenation of Biorefinery Lignin-Rich Wastes to Hydrocarbons.
    Wang H; Duan Y; Zhang Q; Yang B
    ChemSusChem; 2018 Aug; 11(15):2562-2568. PubMed ID: 29968345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective Release of Lignin Fragments from Lignocellulose by Lewis Acid Metal Triflates in the Lignin-First Approach.
    Huang X; Zhu J; Korányi TI; Boot MD; Hensen EJ
    ChemSusChem; 2016 Dec; 9(23):3262-3267. PubMed ID: 27767255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis.
    Bu Q; Lei H; Zacher AH; Wang L; Ren S; Liang J; Wei Y; Liu Y; Tang J; Zhang Q; Ruan R
    Bioresour Technol; 2012 Nov; 124():470-7. PubMed ID: 23021958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid ether and alcohol C-O bond hydrogenolysis catalyzed by tandem high-valent metal triflate + supported Pd catalysts.
    Li Z; Assary RS; Atesin AC; Curtiss LA; Marks TJ
    J Am Chem Soc; 2014 Jan; 136(1):104-7. PubMed ID: 24354599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.
    Panagiotopoulou P; Martin N; Vlachos DG
    ChemSusChem; 2015 Jun; 8(12):2046-54. PubMed ID: 26013846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal Triflates for the Production of Aromatics from Lignin.
    Deuss PJ; Lahive CW; Lancefield CS; Westwood NJ; Kamer PC; Barta K; de Vries JG
    ChemSusChem; 2016 Oct; 9(20):2974-2981. PubMed ID: 27650221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.
    De S; Saha B; Luque R
    Bioresour Technol; 2015 Feb; 178():108-118. PubMed ID: 25443804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lewis acid promoted ruthenium(II)-catalyzed etherifications by selective hydrogenation of carboxylic acids/esters.
    Li Y; Topf C; Cui X; Junge K; Beller M
    Angew Chem Int Ed Engl; 2015 Apr; 54(17):5196-200. PubMed ID: 25728921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A protocol for metal triflate catalyzed direct glycosylations with GalNAc 1-OPiv donors.
    Rasmussen MR; Marqvorsen MH; Kristensen SK; Jensen HH
    J Org Chem; 2014 Nov; 79(22):11011-9. PubMed ID: 25335115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective production of mono-aromatics from lignocellulose over Pd/C catalyst: the influence of acid co-catalysts.
    Huang X; Ouyang X; Hendriks BMS; Gonzalez OMM; Zhu J; Korányi TI; Boot MD; Hensen EJM
    Faraday Discuss; 2017 Sep; 202():141-156. PubMed ID: 28657635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkanes from Bioderived Furans by using Metal Triflates and Palladium-Catalyzed Hydrodeoxygenation of Cyclic Ethers.
    Song HJ; Deng J; Cui MS; Li XL; Liu XX; Zhu R; Wu WP; Fu Y
    ChemSusChem; 2015 Dec; 8(24):4250-5. PubMed ID: 26611542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of jet fuel range branched cycloalkanes with mesityl oxide and 2-methylfuran from lignocellulose.
    Li S; Li N; Wang W; Li L; Wang A; Wang X; Zhang T
    Sci Rep; 2016 Sep; 6():32379. PubMed ID: 27582417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts.
    Zhang X; Zhang Q; Wang T; Ma L; Yu Y; Chen L
    Bioresour Technol; 2013 Apr; 134():73-80. PubMed ID: 23500562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodeoxygenation of Lignin-Based Compounds over Ruthenium Catalysts Based on Sulfonated Porous Aromatic Frameworks.
    Bazhenova MA; Kulikov LA; Makeeva DA; Maximov AL; Karakhanov EA
    Polymers (Basel); 2023 Dec; 15(23):. PubMed ID: 38232050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative basicities toward metal triflates Lewis acids by electrospray mass spectrometry.
    Monfardini I; Massi L; Duñach E; Olivero S; Gal JF
    Chem Commun (Camb); 2010 Nov; 46(44):8472-4. PubMed ID: 20927451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic total hydrodeoxygenation of biomass-derived polyfunctionalized substrates to alkanes.
    Nakagawa Y; Liu S; Tamura M; Tomishige K
    ChemSusChem; 2015 Apr; 8(7):1114-32. PubMed ID: 25711481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels.
    Xu X; Zhang C; Liu Y; Zhai Y; Zhang R
    Chemosphere; 2013 Oct; 93(4):652-60. PubMed ID: 23876507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.