BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29136377)

  • 1. Quantifying Missing (Phospho)Proteome Regions with the Broad-Specificity Protease Subtilisin.
    Gonczarowska-Jorge H; Loroch S; Dell'Aica M; Sickmann A; Roos A; Zahedi RP
    Anal Chem; 2017 Dec; 89(24):13137-13145. PubMed ID: 29136377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable Digestion Strategies for Phosphoproteomics Analysis.
    Gonczarowska-Jorge H; Dell'Aica M; Dickhut C; Zahedi RP
    Methods Mol Biol; 2016; 1355():225-39. PubMed ID: 26584929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating Proteomics Using Broad Specificity Proteases.
    Jiang X; Yeung D; Liu Y; Spicer V; Afshari H; Lao Y; Lin F; Krokhin O; Zahedi RP
    J Proteome Res; 2024 Apr; 23(4):1360-1369. PubMed ID: 38457694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting proline in (phospho)proteomics.
    van der Laarse SAM; van Gelder CAGH; Bern M; Akeroyd M; Olsthoorn MMA; Heck AJR
    FEBS J; 2020 Jul; 287(14):2979-2997. PubMed ID: 31863553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding proteome coverage with orthogonal-specificity α-lytic proteases.
    Meyer JG; Kim S; Maltby DA; Ghassemian M; Bandeira N; Komives EA
    Mol Cell Proteomics; 2014 Mar; 13(3):823-35. PubMed ID: 24425750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach.
    Bian Y; Ye M; Song C; Cheng K; Wang C; Wei X; Zhu J; Chen R; Wang F; Zou H
    J Proteome Res; 2012 May; 11(5):2828-37. PubMed ID: 22468782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the low-specificity protease elastase for large-scale phosphoproteome analysis.
    Wang B; Malik R; Nigg EA; Körner R
    Anal Chem; 2008 Dec; 80(24):9526-33. PubMed ID: 19007248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lys-C/Arg-C, a More Specific and Efficient Digestion Approach for Proteomics Studies.
    Wu Z; Huang J; Huang J; Li Q; Zhang X
    Anal Chem; 2018 Aug; 90(16):9700-9707. PubMed ID: 30024741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protease specificity profiling by tandem mass spectrometry using proteome-derived peptide libraries.
    Schilling O; auf dem Keller U; Overall CM
    Methods Mol Biol; 2011; 753():257-72. PubMed ID: 21604128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ProAlanase is an Effective Alternative to Trypsin for Proteomics Applications and Disulfide Bond Mapping.
    Samodova D; Hosfield CM; Cramer CN; Giuli MV; Cappellini E; Franciosa G; Rosenblatt MM; Kelstrup CD; Olsen JV
    Mol Cell Proteomics; 2020 Dec; 19(12):2139-2157. PubMed ID: 33020190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trypsin catalyzed 16O-to-18O exchange for comparative proteomics: tandem mass spectrometry comparison using MALDI-TOF, ESI-QTOF, and ESI-ion trap mass spectrometers.
    Heller M; Mattou H; Menzel C; Yao X
    J Am Soc Mass Spectrom; 2003 Jul; 14(7):704-18. PubMed ID: 12837592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic and N-Terminomic TAILS Analyses of Human Alveolar Bone Proteins: Improved Protein Extraction Methodology and LysargiNase Digestion Strategies Increase Proteome Coverage and Missing Protein Identification.
    Bell PA; Solis N; Kizhakkedathu JN; Matthew I; Overall CM
    J Proteome Res; 2019 Dec; 18(12):4167-4179. PubMed ID: 31601107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p.
    Bailey UM; Schulz BL
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Apr; 923-924():16-21. PubMed ID: 23454304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysine Propionylation To Boost Sequence Coverage and Enable a "Silent SILAC" Strategy for Relative Protein Quantification.
    Schräder CU; Moore S; Goodarzi AA; Schriemer DC
    Anal Chem; 2018 Aug; 90(15):9077-9084. PubMed ID: 29975514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposite Electron-Transfer Dissociation and Higher-Energy Collisional Dissociation Fragmentation Characteristics of Proteolytic K/R(X)
    Tsiatsiani L; Giansanti P; Scheltema RA; van den Toorn H; Overall CM; Altelaar AF; Heck AJ
    J Proteome Res; 2017 Feb; 16(2):852-861. PubMed ID: 28111955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics beyond trypsin.
    Tsiatsiani L; Heck AJ
    FEBS J; 2015 Jul; 282(14):2612-26. PubMed ID: 25823410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confetti: a multiprotease map of the HeLa proteome for comprehensive proteomics.
    Guo X; Trudgian DC; Lemoff A; Yadavalli S; Mirzaei H
    Mol Cell Proteomics; 2014 Jun; 13(6):1573-84. PubMed ID: 24696503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Getting intimate with trypsin, the leading protease in proteomics.
    Vandermarliere E; Mueller M; Martens L
    Mass Spectrom Rev; 2013; 32(6):453-65. PubMed ID: 23775586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible Lysine Derivatization Enabling Improved Arg-C Digestion, a Highly Specific Arg-C Digestion Using Trypsin.
    Wu Z; Huang J; Lu J; Zhang X
    Anal Chem; 2018 Feb; 90(3):1554-1559. PubMed ID: 29260870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A qualitative and quantitative evaluation of the peptide characteristics of microwave- and ultrasound-assisted digestion in discovery and targeted proteomic analyses.
    Guo Z; Cheng J; Sun H; Sun W
    Rapid Commun Mass Spectrom; 2017 Aug; 31(16):1353-1362. PubMed ID: 28557149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.